豪斯多夫空间

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





在拓扑学和相关的数学分支中,豪斯多夫空间分离空间T2空间是其中的点都“由邻域分离”的拓扑空间。在众多可施加在拓扑空间上的分离公理中,“豪斯多夫条件”是最常使用和讨论的。它蕴涵了序列、网和滤子的极限的唯一性。直观地讲,这个条件可用个双关语来形容:如果某空间中任两点可用开集合将彼此“豪斯多夫”开来,该空间就是“豪斯多夫”的。


豪斯多夫得名于拓扑学的创立者之一费利克斯·豪斯多夫。豪斯多夫最初的拓扑空间定义把豪斯多夫条件包括为公理。




目录





  • 1 定义


  • 2 等價


  • 3 例子和反例


  • 4 性质


  • 5 预正则性和正则性


  • 6 变体


  • 7 注解


  • 8 引用




定义




两个点x和y,由它们各自的邻域U和V来分离。


假设X是拓扑空间。设x和y是X中的点。我们称 x 和 y 可以“由邻域分离”,如果存在 x 的邻域 U 和 y 的邻域 V 使得 U 和 V 是不相交的(U ∩ V = ∅),且 X 中的任意两个不同的点都可以由这样的邻域分离,那么称 X 是豪斯多夫空间。这也是豪斯多夫空间叫做 T2空间分离空间的原因。


X 是预正则空间,如果任何两个拓扑可区分的点可以由邻域分离。预正则空间也叫做 R1空间


在这些条件之间的联系如下。拓扑空间是豪斯多夫空间,当且仅当它是预正则空间和柯尔莫果洛夫空间的二者(就是说独特的点是拓扑可区分的)。拓扑空间是预正则空间,当且仅当它的柯尔莫果洛夫商空间是豪斯多夫空间。



等價


对于拓扑空间X,以下論述等價:



  • Xdisplaystyle XX是豪斯多夫空间。


  • x∈Xdisplaystyle xin Xxin X是積空間X×Xdisplaystyle Xtimes XXtimes X的閉集。

  • X中极限是唯一的(就是序列、网和滤子收敛于最多一个点)。

  • 所有包含在X中的单元素集合都等于包含它的所有闭邻域的交集。


例子和反例


在数学分析所遇到的几乎所有空间都是豪斯多夫空间;最重要的实数是豪斯多夫空间。更一般的说,所有度量空间都是豪斯多夫空间。事实上,在分析中用到的很多空间,比如拓扑群和拓扑流形在其定义中明确的声明了豪斯多夫条件。


最简单的是 T1空間而非 T2 空間的拓扑的例子是餘有限空間。


伪度量空间典型的不是豪斯多夫空间,但是它们是预正则的,并且它们在分析中通常只用于构造豪斯多夫 gauge空间。实际上,在分析家处理非豪斯多夫空间的时候,它至少要是预正则的,他们简单的把它替代为是豪斯多夫空间的它的柯尔莫果洛夫商空间。


相反的,在抽象代数和代数几何更经常见到非预正则空间,特别是作为在代数簇或交换环谱上的扎里斯基拓扑。他们还出现在直觉逻辑的模型论中:所有完全 Heyting代数都是某个拓扑空间的开集的代数,但是这个空间不需要是预正则的,更少见豪斯多夫空间。



性质


豪斯多夫空间的子空间和乘积是豪斯多夫空间,[1]但是豪斯多夫空间的商空间不必须是豪斯多夫空间。事实上,所有拓扑空间都可以实现为某个豪斯多夫空间的商。


豪斯多夫空间是T1空间,这意味着所有单元素集合是闭集。类似的,预正则空间是 R0空间。


豪斯多夫空间另一个美好的性质是紧致集合总是闭集[2]。这对于非豪斯多夫空间就可能失效(例如有其失效的T1空间的例子)。


豪斯多夫空间的定义声称点可以由邻域分离。它蕴涵了表象上更强的东西:在豪斯多夫空间中所有成对的不相交的紧致集合都可以由邻域分离。[3]这是紧致集合经常表现得如同点的一般规则的一个例子。


紧致性条件与预正则一起经常蕴涵了更强的分离公理。例如,任何局部紧致预正则空间都是完全正则空间。紧致预正则空间是正规空间,意味着它们满足乌雷松引理和蒂茨扩张定理,并且有服从局部有限开覆盖的单位划分。这些陈述的豪斯多夫版本是:所有局部紧致豪斯多夫空间是吉洪诺夫空间,而所有紧致豪斯多夫空间是正规豪斯多夫空间。


下列结果是关于来或到豪斯多夫空间的映射 (连续函数和其他) 的技术上的性质。


设 f : X → Y 是连续函数且 Y 是豪斯多夫空间。则 f 的图象(x,f(x)):x∈Xdisplaystyle (x,f(x)):xin X(x,f(x)):xin XX×Ydisplaystyle Xtimes YXtimes Y中的闭子集。


设 f : X → Y 是函数并设ker(f)=(x,x′):f(x)=f(x′)displaystyle mboxker(f)=(x,x'):f(x)=f(x')mboxker(f)=(x,x'):f(x)=f(x')是作为 X×Xdisplaystyle Xtimes XXtimes X的子空间的它的核。


  • 如果f是连续函数并且 Y 是豪斯多夫空间则 ker(f) 是闭集。

  • 如果f是开满射而 ker(f) 是闭集则Y豪斯多夫空间。

  • 如果f是连续开满射(就是开商映射),则Y是豪斯多夫空间,当且仅当ker(f)是闭集。

如果 f,g : X → Y 是连续映射而 Y 是豪斯多夫空间,则均衡子eq(f,g)=x:f(x)=g(x)displaystyle mboxeq(f,g)=x:f(x)=g(x)mboxeq(f,g)=x:f(x)=g(x)在 X 中是闭集。因此如果一致于 f 和 g 在某個 X 的稠密子集上有相同的值 ,则 f 和 g 在整個 X 上都是相同的,已就是 f=g。换句话说,若 f 是映射到豪斯多夫空间的连续函数,則函數 f 會被它在稠密子集上的值唯一決定。


设 f : X → Y 是闭满射且对于所有 y ∈ Y,有 f−1(y) 是紧致的。则若 X 是豪斯多夫空间會推得 Y 也是。


设 X 是紧致豪斯多夫空间、 f : X → Y 是商映射 ,则下列是等价的


  • Y 是豪斯多夫空间

  • f 是闭映射

  • ker(f) 是闭集


预正则性和正则性


所有正则空间都是预正则空间,也都是豪斯多夫空间。有很多拓扑空间的结果对正则空间和豪斯多夫空间二者都成立。多数时候这些结果对于所有预正则空间也成立;它们对正则空间和豪斯多夫空间要分开列出,因为预正则空间的概念要更晚。在另一方面,这些对于正则性为真的结果一般不适用于非正则豪斯多夫空间。


有很多情况拓扑空间的其他条件(比如仿紧致性或局部紧致性)也蕴涵正则性,如果它满足预正则性的话。这种条件经常有两个版本:正则版本和豪斯多夫版本。尽管豪斯多夫空间一般不是正则性的,局部紧致的豪斯多夫空间是正则性的,因为任何豪斯多夫空间都是预正则性的。因此从特定角度来看,在有关这些情况的时候它实际是预正则性的,而非正则性的。但是,定义仍依据正则性来措辞,因为这些条件比预正则性更周知。


更详细细节请参见分离公理的历史。



变体


术语“豪斯多夫”、“分离”和“预正则”还可以用于在拓扑空间上的变体如一致空间、柯西空间和收敛空间。在所有这些例子中统一的概念特征是网或滤子(在它们存在的时候)的极限是唯一的(对于分离空间)或在拓扑同構意義下唯一的(对于预正则空间)。


这显现出一致空间和更一般的柯西空间总是预正则的,所有在这些情况下豪斯多夫条件简约为T0条件。还有完备性在其中有意义的空间,豪斯多夫性在这些情况下是完备性的自然伙伴。特别是,一个空间是完备的,当且仅当所有柯西网有至少一个极限,而一个空间是豪斯多夫的,当且仅当所有柯西网都有最多一个极限(因为只有柯西网可以首先有极限)。



注解




  1. ^ PlanetMath上Hausdorff property is hereditary的資料。


  2. ^ PlanetMath上Proof of A compact set in a Hausdorff space is closed的資料。


  3. ^ PlanetMath上Point and a compact set in a Hausdorff space have disjoint open neighborhoods的資料。



引用


  • Munkres, J. R., 2000, Topology, 2nd edition, Upper Saddle River, NJ: Prentice Hall. ISBN 978-0-13-181629-9

  • 趙文敏,《拓扑學導論》,九章出版社,ISBN 978-957-603-018-5

  • Arkhangelskii, A.V., L.S.Pontryagin, General Topology I,(1990)Springer-Verlag, Berlin. ISBN 978-3-540-18178-1


  • Bourbaki; Elements of Mathematics: General Topology, Addison-Wesley (1966).


  • Willard, Stephen. General Topology. Dover Publications. 2004. ISBN 978-0-486-43479-7. 

Popular posts from this blog

用户:Ww71338ww/绘画

自由群

卑爾根