Tannin

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP







Tannic acid, a type of tannin




Tannin powder (mixture of compounds)




A bottle of tannic acid solution in water


Tannins (or tannoids) are a class of astringent, polyphenolic biomolecules that bind to and precipitate proteins and various other organic compounds including amino acids and alkaloids.


The term tannin (from tanna, an Old High German word for oak or fir tree, as in Tannenbaum) refers to the use of wood tannins from oak in tanning animal hides into leather; hence the words "tan" and "tanning" for the treatment of leather. By extension the term "tannin" is widely applied to any large polyphenolic compound containing sufficient hydroxyls and other suitable groups (such as carboxyls) to form strong complexes with various macromolecules.


The tannin compounds are widely distributed in many species of plants, where they play a role in protection from predation, and perhaps also as pesticides, and might help in regulating plant growth.[1] The astringency from the tannins is what causes the dry and puckery feeling in the mouth following the consumption of unripened fruit, red wine or tea.[2] Likewise, the destruction or modification of tannins with time plays an important role when determining harvesting times.


Tannins have molecular weights ranging from 500 to over 3,000[3] (gallic acid esters) and up to 20,000 (proanthocyanidins).




Contents





  • 1 Structure and classes of tannins

    • 1.1 Pseudo tannins



  • 2 History


  • 3 Occurrence

    • 3.1 Localization in plant organs


    • 3.2 Cellular localization


    • 3.3 Presence in soils


    • 3.4 Presence in water and wood



  • 4 Extraction


  • 5 Tests for tannins

    • 5.1 Alkaloid precipitation


    • 5.2 Goldbeater's skin test


    • 5.3 Ferric chloride test


    • 5.4 Other methods


    • 5.5 Reaction with phenolic rings



  • 6 Food items with tannins

    • 6.1 Pomegranates


    • 6.2 Accessory fruits


    • 6.3 Berries


    • 6.4 Nuts


    • 6.5 Herbs and spices


    • 6.6 Legumes


    • 6.7 Chocolate


    • 6.8 Drinks with tannins

      • 6.8.1 Fruit juices


      • 6.8.2 Beer




  • 7 Health effects of tannins


  • 8 Properties for animal nutrition


  • 9 Tannin market

    • 9.1 Uses



  • 10 See also


  • 11 References


  • 12 External links




Structure and classes of tannins


There are three major classes of tannins: Shown below are the base unit or monomer of the tannin. Particularly in the flavone-derived tannins, the base shown must be (additionally) heavily hydroxylated and polymerized in order to give the high molecular weight polyphenol motif that characterizes tannins. Typically, tannin molecules require at least 12 hydroxyl groups and at least five phenyl groups to function as protein binders.[4]














Base Unit:

Gallic acid.svg
Gallic acid

Phloroglucinol structure.png
Phloroglucinol

Flavan-3-ol.svg

Flavan-3-ol's scaffold
Class/Polymer:

Hydrolyzable tannins

Phlorotannins

Condensed tannins and
Phlobatannins (C-ring
isomerized condensed tannins)[5]
Sources
Plants

Brown algae
Plants (former), tree heartwood (latter)

Oligostilbenoids (oligo- or polystilbenes) are oligomeric forms of stilbenoids and constitute a class of tannins.[6]



Pseudo tannins


Pseudo tannins are low molecular weight compounds associated with other compounds. They do not change color during the Goldbeater's skin test, unlike hydrolysable and condensed tannins, and cannot be used as tanning compounds.[4] Some examples of pseudo tannins and their sources are:[7]












Pseudo tanninSource(s)
Gallic acid
Rhubarb

Flavan-3-ols (Catechins)

Tea, acacia, catechu, cocoa, guarana
Chlorogenic acid
Nux-vomica, coffee, mate
Ipecacuanhic acid
Carapichea ipecacuanha


History


Ellagic acid, gallic acid, and pyrogallic acid were first discovered by chemist Henri Braconnot in 1831.[8]:20Julius Löwe was the first person to synthesize ellagic acid by heating gallic acid with arsenic acid or silver oxide.[8]:20 [9]


Maximilian Nierenstein studied natural phenols and tannins[10] found in different plant species. Working with Arthur George Perkin, he prepared ellagic acid from algarobilla and certain other fruits in 1905.[11] He suggested its formation from galloyl-glycine by Penicillium in 1915.[12]Tannase is an enzyme that Nierenstein used to produce m-digallic acid from gallotannins.[13] He proved the presence of catechin in cocoa beans in 1931.[14] He showed in 1945 that luteic acid, a molecule present in the myrobalanitannin, a tannin found in the fruit of Terminalia chebula, is an intermediary compound in the synthesis of ellagic acid.[15]


At these times, molecule formulas were determined through combustion analysis. The discovery in 1943 by Martin and Synge of paper chromatography provided for the first time the means of surveying the phenolic constituents of plants and for their separation and identification. There was an explosion of activity in this field after 1945, including prominent work by Edgar Charles Bate-Smith and Tony Swain at Cambridge University.[16]


In 1966, Edwin Haslam proposed a first comprehensive definition of plant polyphenols based on the earlier proposals of Bate-Smith, Swain and Theodore White, which includes specific structural characteristics common to all phenolics having a tanning property. It is referred to as the White–Bate-Smith–Swain–Haslam (WBSSH) definition.[17]



Occurrence


Tannins are distributed in species throughout the plant kingdom. They are commonly found in both gymnosperms as well as angiosperms. Mole studied the distribution of tannin in 180 families of dicotyledons and 44 families of monocotyledons (Cronquist). Most families of dicot contain tannin-free species (tested by their ability to precipitate proteins). The best known families of which all species tested contain tannin are: Aceraceae, Actinidiaceae, Anacardiaceae, Bixaceae, Burseraceae, Combretaceae, Dipterocarpaceae, Ericaceae, Grossulariaceae, Myricaceae for dicot and Najadaceae and Typhaceae in Monocot. To the family of the oak, Fagaceae, 73% of the species tested (N = 22) contain tannin. For those of acacias, Mimosaceae, only 39% of the species tested (N = 28) contain tannin, among Solanaceae rate drops to 6% and 4% for the Asteraceae. Some families like the Boraginaceae, Cucurbitaceae, Papaveraceae contain no tannin-rich species.[18]


The most abundant polyphenols are the condensed tannins, found in virtually all families of plants, and comprising up to 50% of the dry weight of leaves. Tannins of tropical woods tend to be of a cathetic nature rather than of the gallic type present in temperate woods.[19]


There may be a loss in the bio-availability of still other tannins in plants due to birds, pests, and other pathogens.[20]



Localization in plant organs


Tannins are found in leaf, bud, seed, root, and stem tissues. An example of the location of the tannins in stem tissue is that they are often found in the growth areas of trees, such as the secondary phloem and xylem and the layer between the cortex and epidermis. Tannins may help regulate the growth of these tissues.



Cellular localization


In all vascular plants studied so far, tannins are manufactured by a chloroplast-derived organelle, the tannosome.[21] Tannins are mainly physically located in the vacuoles or surface wax of plants. These storage sites keep tannins active against plant predators, but also keep some tannins from affecting plant metabolism while the plant tissue is alive; it is only after cell breakdown and death that the tannins are active in metabolic effects.[citation needed]


Tannins are classified as ergastic substances, i.e., non-protoplasm materials found in cells. Tannins, by definition, precipitate proteins. In this condition, they must be stored in organelles able to withstand the protein precipitation process. Idioblasts are isolated plant cells which differ from neighboring tissues and contain non-living substances. They have various functions such as storage of reserves, excretory materials, pigments, and minerals. They could contain oil, latex, gum, resin or pigments etc. They also can contain tannins. In Japanese persimmon (Diospyros kaki) fruits, tannin is accumulated in the vacuole of tannin cells, which are idioblasts of parenchyma cells in the flesh.[22]



Presence in soils



The convergent evolution of tannin-rich plant communities has occurred on nutrient-poor acidic soils throughout the world. Tannins were once believed to function as anti-herbivore defenses, but more and more ecologists now recognize them as important controllers of decomposition and nitrogen cycling processes. As concern grows about global warming, there is great interest to better understand the role of polyphenols as regulators of carbon cycling, in particular in northern boreal forests.[citation needed]


Leaf litter and other decaying parts of kauri (Agathis australis), a tree species found in New Zealand, decompose much more slowly than those of most other species. Besides its acidity, the plant also bears substances such as waxes and phenols, most notably tannins, that are harmful to microorganisms.[23]



Presence in water and wood


The leaching of highly water soluble tannins from decaying vegetation and leaves along a stream may produce what is known as a blackwater river. Water flowing out of bogs has a characteristic brown color from dissolved peat tannins. The presence of tannins (or humic acid) in well water can make it smell bad or taste bitter, but this does not make it unsafe to drink.[24]


Tannins leaching from an unprepared driftwood decoration in an aquarium can cause pH lowering and coloring of the water to a tea-like tinge. A way to avoid this is to boil the wood in water several times, discarding the water each time. Using peat as an aquarium substrate can have the same effect. Many hours of boiling the driftwood may need to be followed by many weeks or months of constant soaking and many water changes before the water will stay clear. Adding baking soda to the water to raise its pH level will accelerate the process of leaching, as the more alkaline solution can draw out tannic acid from the wood faster than the pH-neutral water.[25]


Softwoods, while in general much lower in tannins than hardwoods,[26] are usually not recommended for use in an aquarium[27] so using a hardwood with a very light color, indicating a low tannin content, can be an easy way to avoid tannins. Tannic acid is brown in color, so in general white woods have a low tannin content. Woods with a lot of yellow, red, or brown coloration to them (like cedar, redwood, red oak, etc.) tend to contain a lot of tannin.[28]





Tannin-rich fresh water draining into Cox Bight from Freney Lagoon, Southwest Conservation Area, Tasmania, Australia 





Bog-wood (similar to, but not, driftwood) in an aquarium, turning the water a tea-like brown 




Upper Tahquamenon falls Panoramic view 




A tannin-rich stream produces a maroon colour near Milabena, Tasmania 




Extraction


There is no single protocol for extracting tannins from all plant material. The procedures used for tannins are widely variable.[29] It may be that acetone in the extraction solvent increases the total yield by inhibiting interactions between tannins and proteins during extraction[29] or even by breaking hydrogen bonds between tannin-protein complexes.[30]



Tests for tannins


There are three groups of methods for the analysis of tannins: precipitation of proteins or alkaloids, reaction with phenolic rings, and depolymerization.[31]



Alkaloid precipitation


Alkaloids such as caffeine, cinchonine, quinine or strychnine, precipitates polyphenols and tannins. This property can be used in a quantitation method.[32]



Goldbeater's skin test


When goldbeater's skin or ox skin is dipped in HCl, rinsed in water, soaked in the tannin solution for 5 minutes, washed in water, and then treated with 1% FeSO4 solution, it gives a blue black color if tannin was present.[citation needed]



Ferric chloride test


Use of ferric chloride (FeCl3) tests for phenolics in general. Powdered plant leaves of the test plant (1.0 g) are weighed into a beaker and 10 ml of distilled water are added. The mixture is boiled for five minutes. Two drops of 5% FeCl3 are then added. Production of a greenish precipitate was an indication of the presence of tannins.[33] Alternatively, a portion of the water extract is diluted with distilled water in a ratio of 1:4 and few drops of 10% ferric chloride solution is added. A blue or green color indicates the presence of tannins (Evans, 1989).[34]



Other methods


The hide-powder method is used in tannin analysis for leather tannin and the Stiasny method for wood adhesives.[35][36] Statistical analysis reveals that there is no significant relationship between the results from the hide-powder and the Stiasny methods.[37][38]


Hide-powder method

400 mg of sample tannins are dissolved in 100 ml of distilled water. 3 g of slightly chromated hide-powder previously dried in vacuum for 24h over CaCl2 are added and the mixture stirred for 1 h at ambient temperature. The suspension is filtered without vacuum through a sintered glass filter. The weight gain of the hide-powder expressed as a percentage of the weight of the starting material is equated to the percentage of tannin in the sample.


Stiasny's method

100 mg of sample tannins are dissolved in 10 ml distilled water. 1 ml of 10M HCl and 2 ml of 37% formaldehyde are added and the mixture heated under reflux for 30 min. The reaction mixture is filtered while hot through a sintered glass filter. The precipitate is washed with hot water (5× 10 ml) and dried over CaCl2. The yield of tannin is expressed as a percentage of the weight of the starting material.



Reaction with phenolic rings


The bark tannins of Commiphora angolensis have been revealed by the usual color and precipitation reactions and by quantitative determination by the methods of Löwenthal-Procter and of Deijs[39] (formalin-hydrochloric acid method).[40]


Colorimetric methods have existed such as the Neubauer-Löwenthal method which uses potassium permanganate as an oxidizing agent and indigo sulfate as an indicator, originally proposed by Löwenthal in 1877.[41] The difficulty is that the establishing of a titer for tannin is not always convenient since it is extremely difficult to obtain the pure tannin. Neubauer proposed to remove this difficulty by establishing the titer not with regard to the tannin but with regard to crystallised oxalic acid, whereby he found that 83 g oxalic acid correspond to 41.20 g tannin. Löwenthal's method has been criticized. For instance, the amount of indigo used is not sufficient to retard noticeably the oxidation of the non-tannins substances. The results obtained by this method are therefore only comparative.[42][43] A modified method, proposed in 1903 for the quantification of tannins in wine, Feldmann's method, is making use of calcium hypochlorite, instead of potassium permanganate, and indigo sulfate.[44][45]



Food items with tannins



Pomegranates




Accessory fruits


Strawberries contain both hydrolyzable and condensed tannins.[46]



Berries




Strawberries in a bowl


Most berries, such as cranberries,[47] and blueberries,[48] contain both hydrolyzable and condensed tannins.



Nuts


Nuts that can be consumed raw, such as hazelnuts, walnuts, and pecans, contain high amounts of tannins. Almonds have a lower content. Tannin concentration in the crude extract of these nuts did not directly translate to the same relationships for the condensed fraction.[49]



Herbs and spices


Cloves, tarragon, cumin, thyme, vanilla, and cinnamon all contain tannins.[citation needed]



Legumes


Most legumes contain tannins. Red-colored beans contain the most tannins, and white-colored beans have the least. Peanuts without shells have a very low tannin content. Chickpeas (garbanzo beans) have a smaller amount of tannins.[50]



Chocolate


Chocolate liquor contains about 6% tannins.[51]



Drinks with tannins



Principal human dietary sources of tannins are tea and coffee.[52] Most wines aged in charred oak barrels possess tannins absorbed from the wood.[53] Soils high in clay also contribute to tannins in wine grapes.[54] This concentration gives wine its signature astringency.[55]


Coffee pulp has been found to contain low to trace amounts of tannins.[56]



Fruit juices


Although citrus fruits do not themselves contain tannins, orange-colored juices often contain food dyes with tannins. Apple juice, grape juices and berry juices are all high in tannins. Sometimes tannins are even added to juices and ciders to create a more astringent feel to the taste.



Beer


In addition to the alpha acids extracted from hops to provide bitterness in beer, condensed tannins are also present. These originate both from the malt and hops. Especially in Germany, trained brewmasters consider the presence of tannins as a flaw. In some styles, the presence of this astringency is acceptable or even desired, as, for example, in a Flanders red ale.[citation needed]


In lager type beers, the tannins can form a precipitate with specific haze-forming proteins in the beer resulting in turbidity at low temperature. This chill haze can be prevented by removing part of the tannins or part of the haze-forming proteins. Tannins are removed using PVPP, haze-forming proteins by using silica or tannic acid.[57]



Health effects of tannins




Properties for animal nutrition


Tannins have traditionally been considered antinutritional, but it is now known that their beneficial or antinutritional properties depend upon their chemical structure and dosage. The new technologies used to analyze molecular and chemical structures have shown that a division into condensed and hydrolyzable tannins is too simplistic.[58] Recent studies have demonstrated that products containing chestnut tannins included at low dosages (0.15–0.2%) in the diet of chickens may be beneficial.[59]


Some studies suggest that chestnut tannins have positive effects on silage quality in the round bale silages, in particular reducing NPNs (non protein nitrogen) in the lowest wilting level.[60]


Improved fermentability of soya meal nitrogen in the rumen may occur.[61] Studies conducted in 2002 on in vitro ammonia release and dry matter degradation of soybean meal comparing three different types of tannins (quebracho, acacia and chestnut) demonstrated that chestnut tannins are more efficient in protecting soybean meal from in vitro degradation by rumen bacteria.[62]


Condensed tannins inhibit herbivore digestion by binding to consumed plant proteins and making them more difficult for animals to digest, and by interfering with protein absorption and digestive enzymes (for more on that topic, see plant defense against herbivory). Many tannin-consuming animals secrete a tannin-binding protein (mucin) in their saliva. Tannin-binding capacity of salivary mucin is directly related to its proline content. Salivary proline-rich proteins (PRPs) are sometimes used to inactivate tannins. One reason is that they inactivate tannins to a greater extent than do dietary proteins resulting in reduced fecal nitrogen losses. PRPs additionally contain non-specific nitrogen and non-essential amino acids making them more convenient than valuable dietary protein.[citation needed]


Histatins, another type of salivary proteins, also precipitate tannins from solution, thus preventing alimentary adsorption.[63]



Tannin market




Tannin in a plastic container


Tannin production began at the beginning of the 19th century with the industrial revolution, to produce tanning material for the need for more leather. Before that time, processes used plant material and were long (up to six months).[citation needed]


There was a collapse in the vegetable tannin market in the 1950s–1960s, due to the appearance of synthetic tannins, which were invented in response to a scarcity of vegetable tannins during World War II. At that time, many small tannin industry sites closed.[64] Vegetable tannins are estimated to be used for the production of 10–20% of the global leather production.[citation needed]


The cost of the final product depends on the method used to extract the tannins, in particular the use of solvents, alkali and other chemicals used (for instance glycerin). For large quantities, the most cost-effective method is hot water extraction.


Tannic acid is used worldwide as clarifying agent in alcoholic drinks and as aroma ingredient in both alcoholic and soft drinks or juices. Tannins from different botanical origins also find extensive uses in the wine industry.[citation needed]



Uses


Tannins are an important ingredient in the process of tanning leather. Tanbark from oak, mimosa, chestnut and quebracho tree has traditionally been the primary source of tannery tannin, though inorganic tanning agents are also in use today and account for 90% of the world's leather production.[65]


Tannins produce different colors with ferric chloride (either blue, blue black, or green to greenish-black) according to the type of tannin. Iron gall ink is produced by treating a solution of tannins with iron(II) sulfate.[66]


Tannin is a component in a type of industrial particleboard adhesive developed jointly by the Tanzania Industrial Research and Development Organization and Forintek Labs Canada.[67]Pinus radiata tannins has been investigated for the production of wood adhesives.[68]


Condensed tannins, e.g., quebracho tannin, and Hydrolyzable tannins, e.g., chestnut tannin, appear to be able to substitute a high proportion of synthetic phenol in phenol-formaldehyde resins for wood particleboard.[citation needed]


Tannins can be used for production of anti-corrosive primer, sold under brand-name "Nox Primer" for treatment of rusted steel surfaces prior to painting, rust converter to transform oxidized steel into a smooth sealed surface and rust inhibitor.[citation needed]


The use of resins made of tannins has been investigated to remove mercury and methylmercury from solution.[69] Immobilized tannins have been tested to recover uranium from seawater.[70]



See also


  • Polyphenol


References




  1. ^ Katie E. Ferrell; Thorington, Richard W. (2006). Squirrels: the animal answer guide. Baltimore: Johns Hopkins University Press. p. 91. ISBN 0-8018-8402-0. 


  2. ^ McGee, Harold (2004). On food and cooking: the science and lore of the kitchen. New York: Scribner. p. 714. ISBN 0-684-80001-2. 


  3. ^ Bate-Smith and Swain (1962). "Flavonoid compounds". In Florkin M.; Mason H. S. Comparative biochemistry. III. New York: Academic Press. pp. 75–809. 


  4. ^ ab Notes on Tannins from PharmaXChange.info Archived 4 January 2015 at the Wayback Machine.


  5. ^ page 113 "Chemistry and Significance of Condensed Tannins" By Richard W. Hemingway, Joseph J. Karchesy, ISBN 1468475118


  6. ^ Boralle, N; Gottlieb, H.E; Gottlieb, O.R; Kubitzki, K; Lopes, L.M.X; Yoshida, M; Young, M.C.M (1993). "Oligostilbenoids from Gnetum venosum". Phytochemistry. 34 (5): 1403–1407. doi:10.1016/0031-9422(91)80038-3. 


  7. ^ Ashutosh Kar (2003). Pharmacognosy And Pharmacobiotechnology. New Age International. pp. 44–. ISBN 978-81-224-1501-8. Archived from the original on 2 June 2013. Retrieved 31 January 2011. 


  8. ^ ab Grasser, Georg (1922). Synthetic Tannins. F. G. A. Enna. (trans.). ISBN 9781406773019. 


  9. ^ Löwe, Zeitschrift für Chemie, 1868, 4, 603


  10. ^ Drabble, E.; Nierenstein, M. (1907). "On the Rôle of Phenols, Tannic Acids, and Oxybenzoic Acids in Cork Formation". Biochemical Journal. 2 (3): 96–102.1. PMC 1276196 Freely accessible. PMID 16742048. 


  11. ^ Perkin, A. G.; Nierenstein, M. (1905). "CXLI.—Some oxidation products of the hydroxybenzoic acids and the constitution of ellagic acid. Part I". Journal of the Chemical Society, Transactions. 87: 1412. doi:10.1039/CT9058701412. 


  12. ^ Nierenstein, M. (1915). "The Formation of Ellagic Acid from Galloyl-Glycine by Penicillium". The Biochemical Journal. 9 (2): 240–244. doi:10.1042/bj0090240. PMC 1258574 Freely accessible. PMID 16742368. 


  13. ^ Nierenstein, M. (1932). "A biological synthesis of m-digallic acid". The Biochemical Journal. 26 (4): 1093–1094. doi:10.1042/bj0261093. PMC 1261008 Freely accessible. PMID 16744910. 


  14. ^ Adam, W. B.; Hardy, F.; Nierenstein, M. (1931). "The Catechin of the Cacao Bean". Journal of the American Chemical Society. 53 (2): 727–728. doi:10.1021/ja01353a041. 


  15. ^ Nierenstein, M.; Potter, J. (1945). "The distribution of myrobalanitannin". The Biochemical Journal. 39 (5): 390–392. doi:10.1042/bj0390390. PMC 1258254 Freely accessible. PMID 16747927. 


  16. ^ Haslam, Edwin (2007). "Vegetable tannins – Lessons of a phytochemical lifetime". Phytochemistry. 68 (22–24): 2713–2721. doi:10.1016/j.phytochem.2007.09.009. PMID 18037145. 


  17. ^ Quideau, Stéphane (22 September 2009). "Why bother with Polyphenols". Groupe Polyphenols. Archived from the original on 10 March 2012. Retrieved 21 August 2012. [self-published source?]


  18. ^ Simon Mole (1993). "The Systematic Distribution of Tannins in the Leaves of Angiosperms: A Tool for Ecological Studies". Biochemical Systematics and Ecology. 21 (8): 833–846. doi:10.1016/0305-1978(93)90096-A. 


  19. ^ Tannin in Tropical Woods. Doat J, Bois. For Tmp., 1978, volume 182, pages 34-37


  20. ^ Kadam, S. S.; Salunkhe, D. K.; Chavan, J. K. (1990). Dietary tannins: consequences and remedies. Boca Raton: CRC Press. p. 177. ISBN 0-8493-6811-1. 


  21. ^ "The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta". Jean-Marc Brillouet, Charles Romieu, Benoît Schoefs, Katalin Solymosi, Véronique Cheynier, Hélène Fulcrand, Jean-Luc Verdeil and Geneviève Conéjéro, Annals of Botany, September 11, 2013, doi:10.1093/aob/mct168


  22. ^ Identification of Molecular Markers Linked to the Trait of Natural Astringency Loss of Japanese Persimmon (Diospyros kaki) Fruit. Shinya Kanzaki, Keizo Yonemori and Akira Sugiura, J. Amer. Soc. Hort. Sci., 2001, 126(1), pages 51–55 (article Archived 4 September 2015 at the Wayback Machine.)


  23. ^ Eric Verkaik, Anne G. Jongkindet, Frank Berendse "Short-term and long-term effects of tannins on nitrogen mineralisation and litter decomposition in kauri (Agathis australis (D. Don) Lindl.) forests". Plant And Soil 2006; Volume 287, Numbers 1–2, pages 337–345 doi:10.1007/s11104-006-9081-8


  24. ^ Tannins, lignins and humic acids in well water on www.gov.ns.ca Archived 17 May 2013 at the Wayback Machine.


  25. ^ Preparing Driftwood for Your Freshwater Aquarium Archived 7 July 2011 at the Wayback Machine.


  26. ^ Polyflavonoid tannins — a main cause of soft-rot failure in CCA-treated timber


  27. ^ Driftwood Do's & Don'ts Archived 24 July 2011 at the Wayback Machine.


  28. ^ Tannin and hardwood flooring Archived 17 April 2011 at the Wayback Machine.


  29. ^ ab The Tannin Handbook, Ann E. Hagerman, 1988 (book Archived 28 January 2014 at the Wayback Machine.)


  30. ^ "Condensed tannins". Porter L. J., 1989, in Natural Products of Woody Plants I, Rowe J. W. (ed), Springer-Verlag: Berlin, Germany, pages 651–690


  31. ^ Quantitative Methods for the Estimation of Tannins in Plant Tissues. Augustin Scalbert, Plant Polyphenols, Basic Life Sciences, 1992, Volume 59, pages 259-280, doi:10.1007/978-1-4615-3476-1_15


  32. ^ Plant Polyphenols: Synthesis, Properties, Significance. Richard W. Hemingway, Peter E. Laks, Susan J. Branham (page 263)


  33. ^ "Antibacterial activity of leave extracts of Nymphaea lotus (Nymphaeaceae) on Methicillin resistant Staphylococcus aureus (MRSA) and Vancomycin resistant Staphylococcus aureus (VRSA) isolated from clinical samples". Akinjogunla O. J., Yah C. S., Eghafona N. O. and Ogbemudia F. O., Annals of Biological Research, 2010, 1 (2), pages 174–184


  34. ^ "Phytochemical Analysis and Antimicrobial Activity Of Scoparia dulcis and Nymphaea lotus". Jonathan Yisa, Australian Journal of Basic and Applied Sciences, 2009, 3(4): pages 3975–3979


  35. ^ Tannin analysis of Acacia mearnsii bark - a comparison of the hide-powder and Stiasny methods. Zheng G.C., Lin Y.L. and Yazaki Y., ACIAR Proceedings Series, 1991, No. 35, pages 128–131 (abstract Archived 9 July 2014 at the Wayback Machine.)


  36. ^ Study on Fast Determination Content of Condensed Tannin Using Stiasny Method. Chen Xiangming, Chen Heru and Li Weibin, Guangdong Chemical Industry, 2006-07 (abstract Archived 2 April 2015 at the Wayback Machine.)


  37. ^ Guangcheng, Zheng; Yunlu, Lin; Yazaki, Y. (1991). "Bark tannin contents of Acacia mearnsii provenances and the relationship between the hide-powder and the Stiasny methods of estimation". Australian Forestry. 54 (4): 209–211. doi:10.1080/00049158.1991.10674579. 


  38. ^ Leather Chemists' Pocket-Book: A Short Compendium of Analytical Methods. Henry Richardson Procter, Edmund Stiasny and Harold Brumwel, E. & F.N. Spon, Limited, 1912 - 223 pages (book at google books Archived 16 December 2016 at the Wayback Machine.)


  39. ^ Chemical study of bark from Commiphora angolensis Engl. Cardoso Do Vale, J., Bol Escola Farm Univ Coimbra Edicao Cient, 1962, volume 3, page 128 (abstract Archived 7 June 2014 at the Wayback Machine.)


  40. ^ Catechins isolated from tea leaves. W. B. Deijs, Recueil des Travaux Chimiques des Pays-Bas, 1939, Volume 58, Issue 9, pages 805–830, doi:10.1002/recl.19390580907


  41. ^ Uber die Bestimmung des Gerbstoffs. J. Lowenthal, Z. Anal. Chem, 1877, volume 16, pages 33–48, doi:10.1007/BF01355993


  42. ^ The Estimation of Tannin in Cider. C. W. Spiers, The Journal of Agricultural Science, January 1914, Volume 6, Issue 01, pages 77-83, doi:10.1017/S0021859600002173


  43. ^ Notes on Löwenthal's method for the determination of tannin. Harry Snyder, J. Am. Chem. Soc., 1893, volume 15, issue 10, pages 560–563, doi:10.1021/ja02120a004


  44. ^ Nouvelle methode de dosage du tannin. Schweizerische Wochenschrift für Chemie und Pharmacie, page 329 (article in French Archived 8 August 2014 at the Wayback Machine.)


  45. ^ Journ. de Pharma. et de Chimie, 1903, page 528


  46. ^ Puupponen-Pimiä R.; Nohynek L.; Meier C. "Antimicrobial properties of phenolic compounds from berries". 


  47. ^ Vattem D. A.; Ghaedian R.; Shetty K. (2005). "Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry" (PDF). Asia Pac J Clin Nutr. 14 (2): 120–30. PMID 15927928. Archived from the original (PDF) on 28 December 2010. 


  48. ^ Puupponen-Pimiä R.; Nohynek L.; Meier C.; et al. (April 2001). "Antimicrobial properties of phenolic compounds from berries". J. Appl. Microbiol. 90 (4): 494–507. doi:10.1046/j.1365-2672.2001.01271.x. PMID 11309059. 


  49. ^ http://google.com/search?q=cache:K-qF4vdf8a8J:www.icomst.helsinki.fi/icomst2008/Paper%2520CD/General%2520speakers%2Bposters-3p%2520papers/Session2/2B/2B.3.Amarowicz.pdf+tannin+%22nuts%22&hl=en&ct=clnk&cd=10&gl=us[dead link]


  50. ^ Reed J. D. (1 May 1995). "Nutritional toxicology of tannins and related polyphenols in forage legumes". J. Anim. Sci. 73 (5): 1516–28. PMID 7665384. [permanent dead link]


  51. ^ Robert L. Wolke; Marlene Parrish (29 March 2005). What Einstein told his cook 2: the sequel: further adventures in kitchen science. W. W. Norton & Company. p. 433. ISBN 978-0-393-05869-7. Archived from the original on 16 December 2016. 


  52. ^ Clifford MN (2004). "Diet-derived phenols in plasma and tissues and their implications for health". Planta Med. 70 (12): 1103–14. doi:10.1055/s-2004-835835. PMID 15643541. 


  53. ^ Tao Y, García JF, Sun DW (2014). "Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process". Crit Rev Food Sci Nutr. 54 (6): 817–35. doi:10.1080/10408398.2011.609949. PMID 24345051. CS1 maint: Uses authors parameter (link)


  54. ^ Oz Clarke Encyclopedia of Grapes pg 155-162 Harcourt Books 2001 ISBN 0-15-100714-4


  55. ^ McRae JM, Kennedy JA (2011). "Wine and grape tannin interactions with salivary proteins and their impact on astringency: a review of current research". Molecules. 16 (3): 2348–64. doi:10.3390/molecules16032348. PMID 21399572. CS1 maint: Uses authors parameter (link)


  56. ^ Clifford M. N.; Ramirez-Martinez J. R. (1991). "Tannins in wet-processed coffee beans and coffee pulp". Food Chemistry. 40 (2): 191–200. doi:10.1016/0308-8146(91)90102-T. 


  57. ^ "Archived copy" (PDF). Archived from the original (PDF) on 14 July 2011. Retrieved 10 March 2010. 


  58. ^ Muller-Harvey I.; McAllan A. B. (1992). "Tannins: Their biochemistry and nutritional properties". Adv. Plant Cell Biochem. Biotechnol. 1: 151–217. 


  59. ^ Schiavone A.; Guo K.; Tassone S.; et al. (March 2008). "Effects of a natural extract of chestnut wood on digestibility, performance traits, and nitrogen balance of broiler chicks". Poult. Sci. 87 (3): 521–7. doi:10.3382/ps.2007-00113. PMID 18281579. [permanent dead link]


  60. ^ Tabacco E.; Borreani G.; Crovetto G. M.; Galassi G.; Colombo D.; Cavallarin L. (1 December 2006). "Effect of chestnut tannin on fermentation quality, proteolysis, and protein rumen degradability of alfalfa silage". J. Dairy Sci. 89 (12): 4736–46. doi:10.3168/jds.S0022-0302(06)72523-1. PMID 17106105. Archived from the original on 3 March 2016. 


  61. ^ Mathieu F.; Jouany J. P. (1993). "Effect of chestnut tannin on the fermentability of soyabean meal nitrogen in the rumen". Ann Zootech. 42 (2): 127. doi:10.1051/animres:19930210. 


  62. ^ González S.; Pabón M. L.; Carulla J. (2002). "Effects of tannins on in vitro ammonia release and dry matter degradation of soybean meal". Arch. Latinoam. Prod. Anim. 10 (2): 97–101. 


  63. ^ Salivary proteins as a defense against dietary tannins. Shimada T. Journal of Chemical Ecology 2006 Jun;32(6):1149-63.


  64. ^ "The Status of Mangrove Ecosystems: Trends in the Utilisation and Management of Mangrove Resources". D. Macintosh and S. Zisman[permanent dead link]


  65. ^ Marion Kite; Roy Thomson (2006). Conservation of leather and related materials. Butterworth-Heinemann. p. 23. ISBN 978-0-7506-4881-3. Archived from the original on 16 December 2016. 


  66. ^ Lemay, Marie-France. "Iron Gall Ink". Traveling Scriptorium: A Teaching Kit. Yale University. Archived from the original on 15 February 2017. Retrieved 18 January 2017. 


  67. ^ Bisanda E. T. N.; Ogola W. O.; Tesha J. V. (August 2003). "Characterisation of tannin resin blends for particle board applications". Cement and Concrete Composites. 25 (6): 593–8. doi:10.1016/S0958-9465(02)00072-0. 


  68. ^ Li, Jingge; Maplesden, Frances (1998). "Commercial production of tannins from radiata pine bark for wood adhesives" (PDF). IPENZ Transactions. 25 (1/EMCh). Archived from the original (PDF) on 22 January 2003. 


  69. ^ Torres J.; Olivares S.; De La Rosa D.; Lima L.; Martínez F.; Munita C. S.; Favaro D. I. T. (1999). "Removal of mercury(II) and methylmercury from solution by tannin adsorbents". Journal of Radioanalytical and Nuclear Chemistry. 240 (1): 361–5. doi:10.1007/BF02349180. 


  70. ^ Takashi Sakaguchia; Akira Nakajimaa (June 1987). "Recovery of Uranium from Seawater by Immobilized Tannin". Separation Science and Technology. 22 (6): 1609–23. doi:10.1080/01496398708058421. 



External links




  • Tannins: fascinating but sometimes dangerous molecules


  • "Tannin Chemistry" (PDF).  (1.41 MB)


  • Haslam, Edwin (1989). Plant polyphenols: vegetable tannins revisited. CUP Archive. ISBN 978-0-521-32189-1. 







Popular posts from this blog

用户:Ww71338ww/绘画

自由群

卑爾根