現在支持這些字符的字體有“Aegyptus”、“Noto Sans Egyptian Hieroglyphs”和“Segoe UI Historic”(Windows 10自带字体)。
聖書體[1] Unicode Consortium官方代碼表
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
U+1300x
𓀀
𓀁
𓀂
𓀃
𓀄
𓀅
𓀆
𓀇
𓀈
𓀉
𓀊
𓀋
𓀌
𓀍
𓀎
𓀏
U+1301x
𓀐
𓀑
𓀒
𓀓
𓀔
𓀕
𓀖
𓀗
𓀘
𓀙
𓀚
𓀛
𓀜
𓀝
𓀞
𓀟
U+1302x
𓀠
𓀡
𓀢
𓀣
𓀤
𓀥
𓀦
𓀧
𓀨
𓀩
𓀪
𓀫
𓀬
𓀭
𓀮
𓀯
U+1303x
𓀰
𓀱
𓀲
𓀳
𓀴
𓀵
𓀶
𓀷
𓀸
𓀹
𓀺
𓀻
𓀼
𓀽
𓀾
𓀿
U+1304x
𓁀
𓁁
𓁂
𓁃
𓁄
𓁅
𓁆
𓁇
𓁈
𓁉
𓁊
𓁋
𓁌
𓁍
𓁎
𓁏
U+1305x
𓁐
𓁑
𓁒
𓁓
𓁔
𓁕
𓁖
𓁗
𓁘
𓁙
𓁚
𓁛
𓁜
𓁝
𓁞
𓁟
U+1306x
𓁠
𓁡
𓁢
𓁣
𓁤
𓁥
𓁦
𓁧
𓁨
𓁩
𓁪
𓁫
𓁬
𓁭
𓁮
𓁯
U+1307x
𓁰
𓁱
𓁲
𓁳
𓁴
𓁵
𓁶
𓁷
𓁸
𓁹
𓁺
𓁻
𓁼
𓁽
𓁾
𓁿
U+1308x
𓂀
𓂁
𓂂
𓂃
𓂄
𓂅
𓂆
𓂇
𓂈
𓂉
𓂊
𓂋
𓂌
𓂍
𓂎
𓂏
U+1309x
𓂐
𓂑
𓂒
𓂓
𓂔
𓂕
𓂖
𓂗
𓂘
𓂙
𓂚
𓂛
𓂜
𓂝
𓂞
𓂟
U+130Ax
𓂠
𓂡
𓂢
𓂣
𓂤
𓂥
𓂦
𓂧
𓂨
𓂩
𓂪
𓂫
𓂬
𓂭
𓂮
𓂯
U+130Bx
𓂰
𓂱
𓂲
𓂳
𓂴
𓂵
𓂶
𓂷
𓂸
𓂹
𓂺
𓂻
𓂼
𓂽
𓂾
𓂿
U+130Cx
𓃀
𓃁
𓃂
𓃃
𓃄
𓃅
𓃆
𓃇
𓃈
𓃉
𓃊
𓃋
𓃌
𓃍
𓃎
𓃏
U+130Dx
𓃐
𓃑
𓃒
𓃓
𓃔
𓃕
𓃖
𓃗
𓃘
𓃙
𓃚
𓃛
𓃜
𓃝
𓃞
𓃟
U+130Ex
𓃠
𓃡
𓃢
𓃣
𓃤
𓃥
𓃦
𓃧
𓃨
𓃩
𓃪
𓃫
𓃬
𓃭
𓃮
𓃯
U+130Fx
𓃰
𓃱
𓃲
𓃳
𓃴
𓃵
𓃶
𓃷
𓃸
𓃹
𓃺
𓃻
𓃼
𓃽
𓃾
𓃿
U+1310x
𓄀
𓄁
𓄂
𓄃
𓄄
𓄅
𓄆
𓄇
𓄈
𓄉
𓄊
𓄋
𓄌
𓄍
𓄎
𓄏
U+1311x
𓄐
𓄑
𓄒
𓄓
𓄔
𓄕
𓄖
𓄗
𓄘
𓄙
𓄚
𓄛
𓄜
𓄝
𓄞
𓄟
U+1312x
𓄠
𓄡
𓄢
𓄣
𓄤
𓄥
𓄦
𓄧
𓄨
𓄩
𓄪
𓄫
𓄬
𓄭
𓄮
𓄯
U+1313x
𓄰
𓄱
𓄲
𓄳
𓄴
𓄵
𓄶
𓄷
𓄸
𓄹
𓄺
𓄻
𓄼
𓄽
𓄾
𓄿
U+1314x
𓅀
𓅁
𓅂
𓅃
𓅄
𓅅
𓅆
𓅇
𓅈
𓅉
𓅊
𓅋
𓅌
𓅍
𓅎
𓅏
U+1315x
𓅐
𓅑
𓅒
𓅓
𓅔
𓅕
𓅖
𓅗
𓅘
𓅙
𓅚
𓅛
𓅜
𓅝
𓅞
𓅟
U+1316x
𓅠
𓅡
𓅢
𓅣
𓅤
𓅥
𓅦
𓅧
𓅨
𓅩
𓅪
𓅫
𓅬
𓅭
𓅮
𓅯
U+1317x
𓅰
𓅱
𓅲
𓅳
𓅴
𓅵
𓅶
𓅷
𓅸
𓅹
𓅺
𓅻
𓅼
𓅽
𓅾
𓅿
U+1318x
𓆀
𓆁
𓆂
𓆃
𓆄
𓆅
𓆆
𓆇
𓆈
𓆉
𓆊
𓆋
𓆌
𓆍
𓆎
𓆏
U+1319x
𓆐
𓆑
𓆒
𓆓
𓆔
𓆕
𓆖
𓆗
𓆘
𓆙
𓆚
𓆛
𓆜
𓆝
𓆞
𓆟
U+131Ax
𓆠
𓆡
𓆢
𓆣
𓆤
𓆥
𓆦
𓆧
𓆨
𓆩
𓆪
𓆫
𓆬
𓆭
𓆮
𓆯
U+131Bx
𓆰
𓆱
𓆲
𓆳
𓆴
𓆵
𓆶
𓆷
𓆸
𓆹
𓆺
𓆻
𓆼
𓆽
𓆾
𓆿
U+131Cx
𓇀
𓇁
𓇂
𓇃
𓇄
𓇅
𓇆
𓇇
𓇈
𓇉
𓇊
𓇋
𓇌
𓇍
𓇎
𓇏
U+131Dx
𓇐
𓇑
𓇒
𓇓
𓇔
𓇕
𓇖
𓇗
𓇘
𓇙
𓇚
𓇛
𓇜
𓇝
𓇞
𓇟
U+131Ex
𓇠
𓇡
𓇢
𓇣
𓇤
𓇥
𓇦
𓇧
𓇨
𓇩
𓇪
𓇫
𓇬
𓇭
𓇮
𓇯
U+131Fx
𓇰
𓇱
𓇲
𓇳
𓇴
𓇵
𓇶
𓇷
𓇸
𓇹
𓇺
𓇻
𓇼
𓇽
𓇾
𓇿
U+1320x
𓈀
𓈁
𓈂
𓈃
𓈄
𓈅
𓈆
𓈇
𓈈
𓈉
𓈊
𓈋
𓈌
𓈍
𓈎
𓈏
U+1321x
𓈐
𓈑
𓈒
𓈓
𓈔
𓈕
𓈖
𓈗
𓈘
𓈙
𓈚
𓈛
𓈜
𓈝
𓈞
𓈟
U+1322x
𓈠
𓈡
𓈢
𓈣
𓈤
𓈥
𓈦
𓈧
𓈨
𓈩
𓈪
𓈫
𓈬
𓈭
𓈮
𓈯
U+1323x
𓈰
𓈱
𓈲
𓈳
𓈴
𓈵
𓈶
𓈷
𓈸
𓈹
𓈺
𓈻
𓈼
𓈽
𓈾
𓈿
U+1324x
𓉀
𓉁
𓉂
𓉃
𓉄
𓉅
𓉆
𓉇
𓉈
𓉉
𓉊
𓉋
𓉌
𓉍
𓉎
𓉏
U+1325x
𓉐
𓉑
𓉒
𓉓
𓉔
𓉕
𓉖
𓉗
𓉘
𓉙
𓉚
𓉛
𓉜
𓉝
𓉞
𓉟
U+1326x
𓉠
𓉡
𓉢
𓉣
𓉤
𓉥
𓉦
𓉧
𓉨
𓉩
𓉪
𓉫
𓉬
𓉭
𓉮
𓉯
U+1327x
𓉰
𓉱
𓉲
𓉳
𓉴
𓉵
𓉶
𓉷
𓉸
𓉹
𓉺
𓉻
𓉼
𓉽
𓉾
𓉿
U+1328x
𓊀
𓊁
𓊂
𓊃
𓊄
𓊅
𓊆
𓊇
𓊈
𓊉
𓊊
𓊋
𓊌
𓊍
𓊎
𓊏
U+1329x
𓊐
𓊑
𓊒
𓊓
𓊔
𓊕
𓊖
𓊗
𓊘
𓊙
𓊚
𓊛
𓊜
𓊝
𓊞
𓊟
U+132Ax
𓊠
𓊡
𓊢
𓊣
𓊤
𓊥
𓊦
𓊧
𓊨
𓊩
𓊪
𓊫
𓊬
𓊭
𓊮
𓊯
U+132Bx
𓊰
𓊱
𓊲
𓊳
𓊴
𓊵
𓊶
𓊷
𓊸
𓊹
𓊺
𓊻
𓊼
𓊽
𓊾
𓊿
U+132Cx
𓋀
𓋁
𓋂
𓋃
𓋄
𓋅
𓋆
𓋇
𓋈
𓋉
𓋊
𓋋
𓋌
𓋍
𓋎
𓋏
U+132Dx
𓋐
𓋑
𓋒
𓋓
𓋔
𓋕
𓋖
𓋗
𓋘
𓋙
𓋚
𓋛
𓋜
𓋝
𓋞
𓋟
U+132Ex
𓋠
𓋡
𓋢
𓋣
𓋤
𓋥
𓋦
𓋧
𓋨
𓋩
𓋪
𓋫
𓋬
𓋭
𓋮
𓋯
U+132Fx
𓋰
𓋱
𓋲
𓋳
𓋴
𓋵
𓋶
𓋷
𓋸
𓋹
𓋺
𓋻
𓋼
𓋽
𓋾
𓋿
U+1330x
𓌀
𓌁
𓌂
𓌃
𓌄
𓌅
𓌆
𓌇
𓌈
𓌉
𓌊
𓌋
𓌌
𓌍
𓌎
𓌏
U+1331x
𓌐
𓌑
𓌒
𓌓
𓌔
𓌕
𓌖
𓌗
𓌘
𓌙
𓌚
𓌛
𓌜
𓌝
𓌞
𓌟
U+1332x
𓌠
𓌡
𓌢
𓌣
𓌤
𓌥
𓌦
𓌧
𓌨
𓌩
𓌪
𓌫
𓌬
𓌭
𓌮
𓌯
U+1333x
𓌰
𓌱
𓌲
𓌳
𓌴
𓌵
𓌶
𓌷
𓌸
𓌹
𓌺
𓌻
𓌼
𓌽
𓌾
𓌿
U+1334x
𓍀
𓍁
𓍂
𓍃
𓍄
𓍅
𓍆
𓍇
𓍈
𓍉
𓍊
𓍋
𓍌
𓍍
𓍎
𓍏
U+1335x
𓍐
𓍑
𓍒
𓍓
𓍔
𓍕
𓍖
𓍗
𓍘
𓍙
𓍚
𓍛
𓍜
𓍝
𓍞
𓍟
U+1336x
𓍠
𓍡
𓍢
𓍣
𓍤
𓍥
𓍦
𓍧
𓍨
𓍩
𓍪
𓍫
𓍬
𓍭
𓍮
𓍯
U+1337x
𓍰
𓍱
𓍲
𓍳
𓍴
𓍵
𓍶
𓍷
𓍸
𓍹
𓍺
𓍻
𓍼
𓍽
𓍾
𓍿
U+1338x
𓎀
𓎁
𓎂
𓎃
𓎄
𓎅
𓎆
𓎇
𓎈
𓎉
𓎊
𓎋
𓎌
𓎍
𓎎
𓎏
U+1339x
𓎐
𓎑
𓎒
𓎓
𓎔
𓎕
𓎖
𓎗
𓎘
𓎙
𓎚
𓎛
𓎜
𓎝
𓎞
𓎟
U+133Ax
𓎠
𓎡
𓎢
𓎣
𓎤
𓎥
𓎦
𓎧
𓎨
𓎩
𓎪
𓎫
𓎬
𓎭
𓎮
𓎯
U+133Bx
𓎰
𓎱
𓎲
𓎳
𓎴
𓎵
𓎶
𓎷
𓎸
𓎹
𓎺
𓎻
𓎼
𓎽
𓎾
𓎿
U+133Cx
𓏀
𓏁
𓏂
𓏃
𓏄
𓏅
𓏆
𓏇
𓏈
𓏉
𓏊
𓏋
𓏌
𓏍
𓏎
𓏏
U+133Dx
𓏐
𓏑
𓏒
𓏓
𓏔
𓏕
𓏖
𓏗
𓏘
𓏙
𓏚
𓏛
𓏜
𓏝
𓏞
𓏟
U+133Ex
𓏠
𓏡
𓏢
𓏣
𓏤
𓏥
𓏦
𓏧
𓏨
𓏩
𓏪
𓏫
𓏬
𓏭
𓏮
𓏯
U+133Fx
𓏰
𓏱
𓏲
𓏳
𓏴
𓏵
𓏶
𓏷
𓏸
𓏹
𓏺
𓏻
𓏼
𓏽
𓏾
𓏿
U+1340x
𓐀
𓐁
𓐂
𓐃
𓐄
𓐅
𓐆
𓐇
𓐈
𓐉
𓐊
𓐋
𓐌
𓐍
𓐎
𓐏
U+1341x
𓐐
𓐑
𓐒
𓐓
𓐔
𓐕
𓐖
𓐗
𓐘
𓐙
𓐚
𓐛
𓐜
𓐝
𓐞
𓐟
U+1342x
𓐠
𓐡
𓐢
𓐣
𓐤
𓐥
𓐦
𓐧
𓐨
𓐩
𓐪
𓐫
𓐬
𓐭
𓐮
註解
1.^ 依據Unicode version 6.3
参考文献
^There were about 1,000 graphemes in the Old Kingdom period, reduced to around 750 to 850 in the classical language of the Middle Kingdom, but inflated to the order of some 5,000 signs in the Ptolemaic period. Antonio Loprieno, Ancient Egyptian: A Linguistic Introduction (Cambridge: Cambridge UP, 1995), p. 12.
^The standard inventory of characters used in Egyptology is Gardiner's sign list (1928–1953). A.H. Gardiner (1928), Catalogue of the Egyptian hieroglyphic printing type, from matrices owned and controlled by Dr. Alan Gardiner, "Additions to the new hieroglyphic fount (1928)", in The Journal of Egyptian Archaeology 15 (1929), p. 95; , "Additions to the new hieroglyphic fount (1931)", in The Journal of Egyptian Archaeology 17 (1931), pp. 245-247; A.H. Gardiner , "Supplement to the catalogue of the Egyptian hieroglyphic printing type, showing acquisitions to December 1953" (1953). Unicode Egyptian Hieroglyphs as of version 5.2 (2009) assigned 1,070 Unicode characters.
^Richard Mattessich. The oldest writings, and inventory tags of Egypt (PDF). Accounting Historians Journal. 2002, 29 (1): 195–208. JSTOR 40698264.[永久失效連結]
Adkins, Lesley; Adkins, Roy. The Keys of Egypt: The Obsession to Decipher Egyptian Hieroglyphs. HarperCollins Publishers. 2000. ISBN 0060194391.引文使用过时参数coauthors (帮助)
Allen, James P. Middle Egyptian: An Introduction to the Language and Culture of Hieroglyphs. Cambridge University Press. 1999. ISBN 0521774837.
Collier, Mark & Bill Manley. How to Read Egyptian Hieroglyphs: a step-by-step guide to teach yourself. British Museum Press. 1998. ISBN 0-7141-1910-5.
Selden, Daniel L. Hieroglyphic Egyptian: An Introduction to the Language and Literature of the Middle Kingdom. University of California Press. 2013. ISBN 0-520-27546-2.
Faulkner, Raymond O. Concise Dictionary of Middle Egyptian. Griffith Institute. 1962. ISBN 0-900416-32-7.
Gardiner, Sir Alan H. Egyptian Grammar: Being an Introduction to the Study of Hieroglyphs. The Griffith Institute. 1973. ISBN 0-900416-35-1.
Hill, Marsha. Gifts for the gods: images from Egyptian temples. New York: The Metropolitan Museum of Art. 2007. ISBN 9781588392312.
Kamrin, Janice. Ancient Egyptian Hieroglyphs: A Practical Guide. Harry N. Abrams, Inc. 2004. ISBN 0-8109-4961-X.
McDonald, Angela. Write Your Own Egyptian Hieroglyphs. Berkeley: University of California Press, 2007 (paperback, ISBN 978-0-520-25235-6).
外部連結
维基共享资源中相关的多媒体资源:圣书体
Ancient Egyptian Hieroglyphics – Aldokkan
Glyphs and Grammars Resources for those interested in learning hieroglyphs, compiled by Aayko Eyma.
Hieroglyphics! Annotated directory of popular and scholarly resources.
Egyptian Hieroglyphic Dictionary by Jim Loy
Wikimedia's hieroglyph writing codes
Unicode Fonts for Ancient Scripts Ancient scripts free software fonts
埃漢詞典 The Egyptian-Chinese Dictionary, 何御德 (Robert P. Hopwood)
参见
埃及主题
语言主题
生命之符
埃及语
埃及数字
埃及学
象形文字
四大自源文字
圣书字
楔形文字
甲骨文
玛雅文字
查
论
编
書寫文字列表
概觀
文字史
字位
列表
文字列表
未解读文字
文字發明者(英语:List of inventors of writing systems)
諸語言書寫系統列表(英语:List of languages by writing system) / 第一次書寫記錄列表(英语:List of languages by first written accounts)
Clash Royale CLAN TAG #URR8PPP 由兩個元素a, b 生成的自由群的凱萊圖 在數學中,一個群 Gdisplaystyle G 被稱作 自由群 ,如果存在 Gdisplaystyle G 的子集 Sdisplaystyle S 使得 Gdisplaystyle G 的任何元素都能唯一地表成由 Sdisplaystyle S 中元素及其逆元組成之乘積(在此不論平庸的表法,例如 st−1=su−1ut−1displaystyle st^-1=su^-1ut^-1 之類);此時也稱 Gdisplaystyle G 為集合 Sdisplaystyle S 上的 自由群 ,其群...