Particular values of the Riemann zeta function

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP





Numerical constants

This article gives some specific values of the Riemann zeta function, including values at integer arguments, and some series involving them.




Contents





  • 1 The Riemann zeta function at 0 and 1


  • 2 Positive integers

    • 2.1 Even positive integers


    • 2.2 Odd positive integers

      • 2.2.1 ζ(5)


      • 2.2.2 ζ(7)


      • 2.2.3 ζ(2n + 1)




  • 3 Negative integers


  • 4 Derivatives


  • 5 Series involving ζ(n)


  • 6 Nontrivial zeros


  • 7 References


  • 8 Further reading




The Riemann zeta function at 0 and 1


At zero, one has


ζ(0)=B1−=−B1+=−12displaystyle zeta (0)=B_1^-=-B_1^+=-tfrac 12!displaystyle zeta (0)=B_1^-=-B_1^+=-tfrac 12!

At 1 there is a pole, so ζ(1) is not finite but the left and right limits are:


limε→0±ζ(1+ε)=±∞displaystyle lim _varepsilon to 0^pm zeta (1+varepsilon )=pm infty displaystyle lim _varepsilon to 0^pm zeta (1+varepsilon )=pm infty

Since it is a pole of first order, its principal value exists and is equal to the Euler–Mascheroni constant γ = 0.57721 56649+.



Positive integers



Even positive integers


For the even positive integers, one has the relationship to the Bernoulli numbers:


ζ(2n)=(−1)n+1B2n(2π)2n2(2n)!displaystyle zeta (2n)=(-1)^n+1frac B_2n(2pi )^2n2(2n)!!zeta (2n)=(-1)^n+1frac B_2n(2pi )^2n2(2n)!!

for n∈Ndisplaystyle nin mathbb N displaystyle nin mathbb N . The first few values are given by:



ζ(2)=1+122+132+⋯=π26=1.6449…displaystyle zeta (2)=1+frac 12^2+frac 13^2+cdots =frac pi ^26=1.6449dots !zeta (2)=1+frac 12^2+frac 13^2+cdots =frac pi ^26=1.6449dots ! (OEIS: A013661)
(the demonstration of this equality is known as the Basel problem)


ζ(4)=1+124+134+⋯=π490=1.0823…displaystyle zeta (4)=1+frac 12^4+frac 13^4+cdots =frac pi ^490=1.0823dots !zeta (4)=1+frac 12^4+frac 13^4+cdots =frac pi ^490=1.0823dots ! (OEIS: A013662)
(the Stefan–Boltzmann law and Wien approximation in physics)


ζ(6)=1+126+136+⋯=π6945=1.0173...…displaystyle zeta (6)=1+frac 12^6+frac 13^6+cdots =frac pi ^6945=1.0173...dots !zeta (6)=1+frac 12^6+frac 13^6+cdots =frac pi ^6945=1.0173...dots ! (OEIS: A013664)


ζ(8)=1+128+138+⋯=π89450=1.00407...…displaystyle zeta (8)=1+frac 12^8+frac 13^8+cdots =frac pi ^89450=1.00407...dots !zeta (8)=1+frac 12^8+frac 13^8+cdots =frac pi ^89450=1.00407...dots ! (OEIS: A013666)


ζ(10)=1+1210+1310+⋯=π1093555=1.000994...…displaystyle zeta (10)=1+frac 12^10+frac 13^10+cdots =frac pi ^1093555=1.000994...dots !zeta (10)=1+frac 12^10+frac 13^10+cdots =frac pi ^1093555=1.000994...dots ! (OEIS: A013668)


ζ(12)=1+1212+1312+⋯=691π12638512875=1.000246…displaystyle zeta (12)=1+frac 12^12+frac 13^12+cdots =frac 691pi ^12638512875=1.000246dots !zeta (12)=1+frac 12^12+frac 13^12+cdots =frac 691pi ^12638512875=1.000246dots ! (OEIS: A013670)


ζ(14)=1+1214+1314+⋯=2π1418243225=1.0000612…displaystyle zeta (14)=1+frac 12^14+frac 13^14+cdots =frac 2pi ^1418243225=1.0000612dots !zeta (14)=1+frac 12^14+frac 13^14+cdots =frac 2pi ^1418243225=1.0000612dots ! (OEIS: A013672).

The relationship between zeta at the positive even integers and the Bernoulli numbers may be written as


Anζ(2n)=Bnπ2ndisplaystyle A_nzeta (2n)=B_npi ^2n,!displaystyle A_nzeta (2n)=B_npi ^2n,!

where Andisplaystyle A_nA_n and Bndisplaystyle B_nB_n are integers for all even ndisplaystyle nn. These are given by the integer sequences OEIS: A002432 and OEIS: A046988, respectively, in OEIS. Some of these values are reproduced below:

























































coefficients
n
A
B
1
6
1
2
90
1
3
945
1
4
9450
1
5
93555
1
6
638512875
691
7
18243225
2
8
325641566250
3617
9
38979295480125
43867
10
1531329465290625
174611
11
13447856940643125
155366
12
201919571963756521875
236364091
13
11094481976030578125
1315862
14
564653660170076273671875
6785560294
15
5660878804669082674070015625
6892673020804
16
62490220571022341207266406250
7709321041217
17
12130454581433748587292890625
151628697551

If we let ηn=Bn/Andisplaystyle eta _n=B_n/A_ndisplaystyle eta _n=B_n/A_n be the coefficient of π2ndisplaystyle pi ^2ndisplaystyle pi ^2n as above,


ζ(2n)=∑ℓ=1∞1ℓ2n=ηnπ2ndisplaystyle zeta (2n)=sum _ell =1^infty frac 1ell ^2n=eta _npi ^2ndisplaystyle zeta (2n)=sum _ell =1^infty frac 1ell ^2n=eta _npi ^2n

then we find recursively,


η1=1/6ηn=∑ℓ=1n−1(−1)ℓ−1ηn−ℓ(2ℓ+1)!+(−1)n+1n(2n+1)!displaystyle beginalignedeta _1&=1/6\eta _n&=sum _ell =1^n-1(-1)^ell -1frac eta _n-ell (2ell +1)!+(-1)^n+1frac n(2n+1)!endaligneddisplaystyle beginalignedeta _1&=1/6\eta _n&=sum _ell =1^n-1(-1)^ell -1frac eta _n-ell (2ell +1)!+(-1)^n+1frac n(2n+1)!endaligned

This recurrence relation may be derived from that for the Bernoulli numbers.


Also, there is another recurrence:


ζ(2n)=1n+12∑k=1n−1ζ(2k)ζ(2n−2k),n>1displaystyle zeta (2n)=frac 1n+frac 12sum _k=1^n-1zeta (2k)zeta (2n-2k),n>1zeta (2n)=frac 1n+frac 12sum _k=1^n-1zeta (2k)zeta (2n-2k),n>1

which can be proved, using that ddxcot⁡(x)=−1−cot2⁡(x)displaystyle frac ddxcot(x)=-1-cot ^2(x)frac ddxcot(x)=-1-cot ^2(x)


The values of the zeta function at non-negative even integers have the generating function:


∑n=0∞ζ(2n)x2n=−πx2cot⁡(πx)=−12+π26x2+π490x4+π6945x6+⋯displaystyle sum _n=0^infty zeta (2n)x^2n=-frac pi x2cot(pi x)=-frac 12+frac pi ^26x^2+frac pi ^490x^4+frac pi ^6945x^6+cdots sum _n=0^infty zeta (2n)x^2n=-frac pi x2cot(pi x)=-frac 12+frac pi ^26x^2+frac pi ^490x^4+frac pi ^6945x^6+cdots

Since


limn→∞ζ(2n)=1displaystyle lim _nrightarrow infty zeta (2n)=1displaystyle lim _nrightarrow infty zeta (2n)=1

The formula also shows that for n∈N,n→∞displaystyle nin mathbb N ,nrightarrow infty nin mathbb N,nrightarrow infty ,


|B2n|∼2(2n)!(2π)2nsim frac 2(2n)!(2pi )^2nleft|B_2nright|sim frac 2(2n)!(2pi )^2n


Odd positive integers


For the first few odd natural numbers one has



ζ(1)=1+12+13+⋯=∞displaystyle zeta (1)=1+frac 12+frac 13+cdots =infty !zeta (1)=1+frac 12+frac 13+cdots =infty !
(the harmonic series);


ζ(3)=1+123+133+⋯=1.20205…displaystyle zeta (3)=1+frac 12^3+frac 13^3+cdots =1.20205dots !zeta (3)=1+frac 12^3+frac 13^3+cdots =1.20205dots ! (OEIS: A02117)
(Apéry's constant)


ζ(5)=1+125+135+⋯=1.03692…displaystyle zeta (5)=1+frac 12^5+frac 13^5+cdots =1.03692dots !zeta (5)=1+frac 12^5+frac 13^5+cdots =1.03692dots ! (OEIS: A013663)


ζ(7)=1+127+137+⋯=1.00834…displaystyle zeta (7)=1+frac 12^7+frac 13^7+cdots =1.00834dots !zeta (7)=1+frac 12^7+frac 13^7+cdots =1.00834dots ! (OEIS: A013665)


ζ(9)=1+129+139+⋯=1.002008…displaystyle zeta (9)=1+frac 12^9+frac 13^9+cdots =1.002008dots !zeta (9)=1+frac 12^9+frac 13^9+cdots =1.002008dots ! (OEIS: A013667)

It is known that ζ(3) is irrational (Apéry's theorem) and that infinitely many of the numbers ζ(2n + 1) (nN) are irrational.[1] There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ(5), ζ(7), ζ(9), or ζ(11) is irrational.[2]


The positive odd integers of the zeta function appear in physics, specifically correlation functions of antiferromagnetic XXX spin chain.[3]


Most of the identities following below are provided by Simon Plouffe. They are notable in that they converge quite rapidly, giving almost three digits of precision per iteration, and are thus useful for high-precision calculations.



ζ(5)


Plouffe gives the following identities


ζ(5)=1294π5−7235∑n=1∞1n5(e2πn−1)−235∑n=1∞1n5(e2πn+1)ζ(5)=12∑n=1∞1n5sinh⁡(πn)−3920∑n=1∞1n5(e2πn−1)−120∑n=1∞1n5(e2πn+1)displaystyle beginalignedzeta (5)&=frac 1294pi ^5-frac 7235sum _n=1^infty frac 1n^5(e^2pi n-1)-frac 235sum _n=1^infty frac 1n^5(e^2pi n+1)\zeta (5)&=12sum _n=1^infty frac 1n^5sinh(pi n)-frac 3920sum _n=1^infty frac 1n^5(e^2pi n-1)-frac 120sum _n=1^infty frac 1n^5(e^2pi n+1)endalignedbeginalignedzeta (5)&=frac 1294pi ^5-frac 7235sum _n=1^infty frac 1n^5(e^2pi n-1)-frac 235sum _n=1^infty frac 1n^5(e^2pi n+1)\zeta (5)&=12sum _n=1^infty frac 1n^5sinh(pi n)-frac 3920sum _n=1^infty frac 1n^5(e^2pi n-1)-frac 120sum _n=1^infty frac 1n^5(e^2pi n+1)endaligned


ζ(7)


ζ(7)=1956700π7−2∑n=1∞1n7(e2πn−1)displaystyle zeta (7)=frac 1956700pi ^7-2sum _n=1^infty frac 1n^7(e^2pi n-1)!displaystyle zeta (7)=frac 1956700pi ^7-2sum _n=1^infty frac 1n^7(e^2pi n-1)!

Note that the sum is in the form of a Lambert series.



ζ(2n + 1)


By defining the quantities


S±(s)=∑n=1∞1ns(e2πn±1)displaystyle S_pm (s)=sum _n=1^infty frac 1n^s(e^2pi npm 1)S_pm (s)=sum _n=1^infty frac 1n^s(e^2pi npm 1)

a series of relationships can be given in the form


0=Anζ(n)−Bnπn+CnS−(n)+DnS+(n)displaystyle 0=A_nzeta (n)-B_npi ^n+C_nS_-(n)+D_nS_+(n),0=A_nzeta (n)-B_npi ^n+C_nS_-(n)+D_nS_+(n),

where An, Bn, Cn and Dn are positive integers. Plouffe gives a table of values:


























































coefficients

n

A

B

C

D
3
180
7
360
0
5
1470
5
3024
84
7
56700
19
113400
0
9
18523890
625
37122624
74844
11
425675250
1453
851350500
0
13
257432175
89
514926720
62370
15
390769879500
13687
781539759000
0
17
1904417007743250
6758333
3808863131673600
29116187100
19
21438612514068750
7708537
42877225028137500
0
21
1881063815762259253125
68529640373
3762129424572110592000
1793047592085750

These integer constants may be expressed as sums over Bernoulli numbers, as given in (Vepstas, 2006) below.


A fast algorithm for the calculation of Riemann's zeta function for any integer argument is given by E. A. Karatsuba.[4][5][6]



Negative integers


In general, for negative integers (and also zero), one has


ζ(−n)=(−1)nBn+1n+1displaystyle zeta (-n)=(-1)^nfrac B_n+1n+1displaystyle zeta (-n)=(-1)^nfrac B_n+1n+1

The so-called "trivial zeros" occur at the negative even integers:


ζ(−2n)=0displaystyle zeta (-2n)=0,displaystyle zeta (-2n)=0,

The first few values for negative odd integers are


ζ(−1)=−112ζ(−3)=1120ζ(−5)=−1252ζ(−7)=1240ζ(−9)=−1132ζ(−11)=69132760ζ(−13)=−112displaystyle beginalignedzeta (-1)&=-frac 112\zeta (-3)&=frac 1120\zeta (-5)&=-frac 1252\zeta (-7)&=frac 1240\zeta (-9)&=-frac 1132\zeta (-11)&=frac 69132760\zeta (-13)&=-frac 112endaligneddisplaystyle beginalignedzeta (-1)&=-frac 112\zeta (-3)&=frac 1120\zeta (-5)&=-frac 1252\zeta (-7)&=frac 1240\zeta (-9)&=-frac 1132\zeta (-11)&=frac 69132760\zeta (-13)&=-frac 112endaligned

However, just like the Bernoulli numbers, these do not stay small for increasingly negative odd values. For details on the first value, see 1 + 2 + 3 + 4 + · · ·.


So ζ(m) can be used as the definition of all (including those for index 0 and 1) Bernoulli numbers.



Derivatives


The derivative of the zeta function at the negative even integers is given by


ζ′(−2n)=(−1)n(2n)!2(2π)2nζ(2n+1)displaystyle zeta ^prime (-2n)=(-1)^nfrac (2n)!2(2pi )^2nzeta (2n+1)displaystyle zeta ^prime (-2n)=(-1)^nfrac (2n)!2(2pi )^2nzeta (2n+1)

The first few values of which are


ζ′(−2)=−ζ(3)4π2ζ′(−4)=34π4ζ(5)ζ′(−6)=−458π6ζ(7)ζ′(−8)=3154π8ζ(9)displaystyle beginalignedzeta ^prime (-2)&=-frac zeta (3)4pi ^2\[6pt]zeta ^prime (-4)&=frac 34pi ^4zeta (5)\[6pt]zeta ^prime (-6)&=-frac 458pi ^6zeta (7)\[6pt]zeta ^prime (-8)&=frac 3154pi ^8zeta (9)endaligneddisplaystyle beginalignedzeta ^prime (-2)&=-frac zeta (3)4pi ^2\[6pt]zeta ^prime (-4)&=frac 34pi ^4zeta (5)\[6pt]zeta ^prime (-6)&=-frac 458pi ^6zeta (7)\[6pt]zeta ^prime (-8)&=frac 3154pi ^8zeta (9)endaligned

One also has



ζ′(0)=−12ln⁡(2π)≈−0.918938533…displaystyle zeta ^prime (0)=-frac 12ln(2pi )approx -0.918938533ldots zeta ^prime (0)=-frac 12ln(2pi )approx -0.918938533ldots (OEIS: A075700),

ζ′(−1)=112−ln⁡A≈−0.1654211437…displaystyle zeta ^prime (-1)=frac 112-ln Aapprox -0.1654211437ldots zeta ^prime (-1)=frac 112-ln Aapprox -0.1654211437ldots (OEIS: A084448)

and



ζ′(2)=16π2(γ+ln⁡2−12ln⁡A+ln⁡π)≈−0.93754825…displaystyle zeta ^prime (2)=frac 16pi ^2(gamma +ln 2-12ln A+ln pi )approx -0.93754825ldots displaystyle zeta ^prime (2)=frac 16pi ^2(gamma +ln 2-12ln A+ln pi )approx -0.93754825ldots (OEIS: A073002)

where A is the Glaisher–Kinkelin constant.



Series involving ζ(n)


The following sums can be derived from the generating function:


∑k=2∞ζ(k)xk−1=−ψ0(1−x)−γdisplaystyle sum _k=2^infty zeta (k)x^k-1=-psi _0(1-x)-gamma sum _k=2^infty zeta (k)x^k-1=-psi _0(1-x)-gamma

where ψ0 is the digamma function.


∑k=2∞(ζ(k)−1)=1displaystyle sum _k=2^infty (zeta (k)-1)=1sum _k=2^infty (zeta (k)-1)=1

∑k=1∞(ζ(2k)−1)=34displaystyle sum _k=1^infty (zeta (2k)-1)=frac 34sum _k=1^infty (zeta (2k)-1)=frac 34

∑k=1∞(ζ(2k+1)−1)=14displaystyle sum _k=1^infty (zeta (2k+1)-1)=frac 14sum _k=1^infty (zeta (2k+1)-1)=frac 14

∑k=2∞(−1)k(ζ(k)−1)=12displaystyle sum _k=2^infty (-1)^k(zeta (k)-1)=frac 12displaystyle sum _k=2^infty (-1)^k(zeta (k)-1)=frac 12

Series related to the Euler–Mascheroni constant (denoted by γ) are


∑k=2∞(−1)kζ(k)k=γdisplaystyle sum _k=2^infty (-1)^kfrac zeta (k)k=gamma sum _k=2^infty (-1)^kfrac zeta (k)k=gamma

∑k=2∞ζ(k)−1k=1−γdisplaystyle sum _k=2^infty frac zeta (k)-1k=1-gamma sum _k=2^infty frac zeta (k)-1k=1-gamma

∑k=2∞(−1)kζ(k)−1k=ln⁡2+γ−1displaystyle sum _k=2^infty (-1)^kfrac zeta (k)-1k=ln 2+gamma -1sum _k=2^infty (-1)^kfrac zeta (k)-1k=ln 2+gamma -1

and using the principal value


ζ(k)=limε→0ζ(k+ε)+ζ(k−ε)2displaystyle zeta (k)=lim _varepsilon to 0frac zeta (k+varepsilon )+zeta (k-varepsilon )2displaystyle zeta (k)=lim _varepsilon to 0frac zeta (k+varepsilon )+zeta (k-varepsilon )2

which of course affects only the value at 1. These formulae can be stated as


∑k=1∞(−1)kζ(k)k=0displaystyle sum _k=1^infty (-1)^kfrac zeta (k)k=0sum _k=1^infty (-1)^kfrac zeta (k)k=0

∑k=1∞ζ(k)−1k=0displaystyle sum _k=1^infty frac zeta (k)-1k=0sum _k=1^infty frac zeta (k)-1k=0

∑k=1∞(−1)kζ(k)−1k=ln⁡2displaystyle sum _k=1^infty (-1)^kfrac zeta (k)-1k=ln 2sum _k=1^infty (-1)^kfrac zeta (k)-1k=ln 2

and show that they depend on the principal value of ζ(1) = γ.



Nontrivial zeros



Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". See Andrew Odlyzko's website for their tables and bibliographies.



References




  1. ^ Rivoal, T. (2000). "La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs". Comptes Rendus de l'Académie des Sciences, Série I. 331: 267–270. arXiv:math/0008051. Bibcode:2000CRASM.331..267R. doi:10.1016/S0764-4442(00)01624-4..mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  2. ^ W. Zudilin (2001). "One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational". Russ. Math. Surv. 56 (4): 774–776. Bibcode:2001RuMaS..56..774Z. doi:10.1070/rm2001v056n04abeh000427.


  3. ^ Boos, H. E.; Korepin, V. E.; Nishiyama, Y.; Shiroishi, M. (2002), "Quantum correlations and number theory", J. Phys. A, 35: 4443–4452, arXiv:cond-mat/0202346, Bibcode:2002JPhA...35.4443B, doi:10.1088/0305-4470/35/20/305.


  4. ^ Karatsuba, E. A. (1995). "Fast calculation of the Riemann zeta function ζ(s) for integer values of the argument s". Probl. Perdachi Inf. 31 (4): 69–80. MR 1367927.


  5. ^ E. A. Karatsuba: Fast computation of the Riemann zeta function for integer argument. Dokl. Math. Vol.54, No.1, p. 626 (1996).


  6. ^ E. A. Karatsuba: Fast evaluation of ζ(3). Probl. Inf. Transm. Vol.29, No.1, pp. 58–62 (1993).




Further reading



  • Ciaurri, Óscar; Navas, Luis M.; Ruiz, Francisco J.; Varona, Juan L. (May 2015). "A Simple Computation of ζ(2k)". The American Mathematical Monthly. 122 (5): 444–451. doi:10.4169/amer.math.monthly.122.5.444. JSTOR 10.4169/amer.math.monthly.122.5.444.


  • Simon Plouffe, "Identities inspired from Ramanujan Notebooks", (1998).


  • Simon Plouffe, "Identities inspired by Ramanujan Notebooks part 2 PDF" (2006).


  • Vepstas, Linas (2006). "On Plouffe's Ramanujan Identities" (PDF). arXiv:math.NT/0609775.


  • Zudilin, Wadim (2001). "One of the Numbers ζ(5), ζ(7), ζ(9), ζ(11) Is Irrational". Russian Mathematical Surveys. 56: 774–776. Bibcode:2001RuMaS..56..774Z. doi:10.1070/RM2001v056n04ABEH000427. MR 1861452.
    PDF PDF Russian PS Russian

  • Nontrival zeros reference by Andrew Odlyzko:
    • Bibliography

    • Tables


Popular posts from this blog

倭马亚王朝

Gabbro

托萊多 (西班牙)