Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Nverify (what is YN ?)
Infobox references
α-Pinene is an organic compound of the terpene class, one of two isomers of pinene.[2] It is an alkene and it contains a reactive four-membered ring. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis) and Saturejamyrtifolia (also known as Zoufa in some regions.)[3][4] Both enantiomers are known in nature; (1S,5S)- or (−)-α-pinene is more common in European pines, whereas the (1R,5R)- or (+)-α-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil and orange peel oil.
Contents
1Reactivity
2Atmospheric role
3Properties and usage
4References
Reactivity
The four-membered ring in α-pinene 1 makes it a reactive hydrocarbon, prone to skeletal rearrangements such as the Wagner-Meerwein rearrangement. For example, attempts to perform hydration or hydrogen halide addition with the alkene functionality typically lead to rearranged products. With concentrated sulfuric acid and ethanol the major products are terpineol 2 and its ethyl ether 3, while glacial acetic acid gives the corresponding acetate ester 4. With dilute acids, terpin hydrate 5 becomes the major product.
With one molar equivalent of anhydrous HCl, the simple addition product 6a can be formed at low temperature in the presence of ether, but it is very unstable. At normal temperatures, or if no ether is present, the major product is bornyl chloride 6b, along with a small amount of fenchyl chloride 6c.[5] For many years 6b (also called "artificial camphor") was referred to as "pinene hydrochloride", until it was confirmed as identical with bornyl chloride made from camphene. If more HCl is used, achiral 7 (dipentene hydrochloride) is the major product along with some 6b. Nitrosyl chloride followed by base leads to the oxime 8 which can be reduced to "pinylamine" 9. Both 8 and 9 are stable compounds containing an intact four-membered ring, and these compounds helped greatly in identifying this important component of the pinene skeleton.[6]
A variety of reagents such as iodine or PCl3 cause aromatisation, leading to p-cymene 10.[citation needed]
Under aerobic oxidation conditions, the main oxidation products are pinene oxide, verbenyl hydroperoxide, verbenol and verbenone.[7]
Atmospheric role
Monoterpenes, of which α-pinene is one of the principal species, are emitted in substantial amounts by vegetation, and these emissions are affected by temperature and light intensity. In the atmosphere α-pinene undergoes reactions with ozone, the OH radical or the NO3 radical,[8] leading to low-volatility species which partly condense on existing aerosols, thereby generating secondary organic aerosols. This has been shown in numerous laboratory experiments for the mono- and sesquiterpenes.[9][10] Products of α-pinene which have been identified explicitly are pinonaldehyde, norpinonaldehyde, pinic acid, pinonic acid and pinalic acid.
Properties and usage
α-Pinene is highly bioavailable with 60% human pulmonary uptake with rapid metabolism or redistribution.[11] α-Pinene is an anti-inflammatory via PGE1,[11] and seems to be an antimicrobial.[12] It exhibits activity as an acetylcholinesterase inhibitor, aiding memory.[11] Like borneol, verbenol and pinocarveol (−)-α-pinene is a positive modulator of GABAA receptors. It acts at the benzodiazepine binding site.[13]
α-Pinene forms the biosynthetic base for CB2 ligands, such as HU-308.[11]
α-Pinene is one of the many terpenes and terpenoids found in Cannabis plants.[14] These compounds are also present in significant levels in the finished, dried Cannabis flower preparation commonly known as marijuana.[15] It is widely theorized by scientists and Cannabis experts alike that these terpenes and terpenoids contribute significantly to the unique "character" or "personality" of each marijuana strain's unique effects.[16] α-Pinene in particular is thought to reduce the memory deficits commonly reported as a side-effect of THC consumption. It likely demonstrates this activity due to its action as an acetylcholinesterase inhibitor, a class of compounds which are known to aid memory and increase alertness.[17]
α-Pinene also contributes significantly to many of the varied, distinct, and unique odor profiles of the multitude of marijuana strains, varieties and cultivars.[18]
^Simonsen, J. L. (1957) The Terpenes (2nd edition) Vol. 2 Cambridge:Cambridge University Press, pp 105-191.
^PDR for Herbal Medicine. Montvale, NJ: Medical Economics Company. p. 1100
^Zebib, Bachar; Beyrouthy, Marc EL; Sarfi, Carl; Merah, Othmane (2015-04-16). "Chemical Composition of the Essential Oil of Satureja myrtifolia (Boiss. & Hohen.) from Lebanon". Journal of Essential Oil-bearing Plants JEOP. 18 (1): 248–254. doi:10.1080/0972060X.2014.890075. ISSN 0972-060X. Archived from the original on 2016-08-04.
^Richter, G. H. (1945) Textbook of Organic Chemistry, 2nd ed., John Wiley & Sons., New York, PP 663-666.
^Ruzicka, L.; Trebler, H. (1921). "Zur Kenntnis des Pinens III Konstitution des Nitrosopinens und seiner Umwandlungsprodukte". Helvetica Chimica Acta. 4: 566–574. doi:10.1002/hlca.19210040161.
^ U. Neuenschwander (2010), "Mechanism of the Aerobic Oxidation of α-Pinene", ChemSusChem (in German), 3 (1), pp. 75–84, doi:10.1002/cssc.200900228, PMID 20017184
^IUPAC Subcommittee on Gas Kinetic Data Evaluation
^Odum, J. R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R.C.; Seinfeld, J. H. (1996). "Gas/particle partitioning and secondary organic aerosol yields". Environmental Science and Technology. 30 (8): 2580–2585. doi:10.1021/es950943+.
^N. M. Donahue; K. M. Henry; T. F. Mentel; A. Kiendler-Scharr; C. Spindler; B. Bohn; T. Brauers; H. P. Dorn; H. Fuchs; R. Tillmann; A. Wahner; H. Saathoff; K.-H. Naumann; O. Mohler; T. Leisner; L. Muller; M.-C. Reinnig; T. Hoffmann; K. Salo; M. Hallquist; M. Frosch; M. Bilde; T. Tritscher; P. Barmet; A. P. Praplan; P. F. DeCarlo; J. Dommen; A. S. H. Prevot; U. Baltensperger (2012). "Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions". Proceedings of the National Academy of Sciences. 109 (34): 13503–13508. doi:10.1073/pnas.1115186109. PMC 3427056. PMID 22869714.
^ abcdRusso, E. B (2011). "Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects". British Journal of Pharmacology. 163 (7): 1344–1364. doi:10.1111/j.1476-5381.2011.01238.x. PMC 3165946. PMID 21749363.
^Nissen, L; Zatta, A; Stefanini, I; Grandi, S; Sgorbati, B; Biavati, B; et al. (2010). "Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.)". Fitoterapia. 81 (5): 413–419. doi:10.1016/j.fitote.2009.11.010. PMID 19969046.
^Yang H, Woo J, Pae AN, Um MY, Cho NC, Park KD, Yoon M, Kim J, Lee CJ, Cho S (2016). "α-Pinene, a major constituent of pine tree oils, enhances non-rapid eye movement sleep in mice through GABAA-benzodiazepine receptors". Mol. Pharmacol. 90 (5): 530–539. doi:10.1124/mol.116.105080. PMID 27573669.
^Russo, E. B., & McPartland, J. M. (2003). Cannabis is more than simply Δ 9-tetrahydrocannabinol. Psychopharmacology, 165(4), 431-432.
^Turner, C. E., Elsohly, M. A., & Boeren, E. G. (1980). Constituents of Cannabis sativa L. XVII. A review of the natural constituents. Journal of Natural Products, 43(2), 169-234.
^Piomelli, D., & Russo, E. B. (2016). The Cannabis sativa versus Cannabis indica debate: an interview with Ethan Russo, MD. Cannabis and cannabinoid research, 1(1), 44-46.
^Mahmoudvand, H., Sheibani, V., Keshavarz, H., Shojaee, S., Esmaeelpour, K., & Ziaali, N. (2016). Acetylcholinesterase Inhibitor Improves Learning and Memory Impairment Induced by Toxoplasma gondii Infection. Iranian journal of parasitology, 11(2), 177-185.
^Mediavilla, V., & Steinemann, S. (1997). Essential oil of Cannabis sativa L. strains. J. Int. Hemp Assoc, 4, 80-82.
Clash Royale CLAN TAG #URR8PPP 由兩個元素a, b 生成的自由群的凱萊圖 在數學中,一個群 Gdisplaystyle G 被稱作 自由群 ,如果存在 Gdisplaystyle G 的子集 Sdisplaystyle S 使得 Gdisplaystyle G 的任何元素都能唯一地表成由 Sdisplaystyle S 中元素及其逆元組成之乘積(在此不論平庸的表法,例如 st−1=su−1ut−1displaystyle st^-1=su^-1ut^-1 之類);此時也稱 Gdisplaystyle G 為集合 Sdisplaystyle S 上的 自由群 ,其群...