Ramification group
In number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension.
Contents
1 Ramification groups in lower numbering
1.1 Example: the cyclotomic extension
1.2 Example: a quartic extension
2 Ramification groups in upper numbering
3 See also
4 Notes
5 References
Ramification groups in lower numbering
Ramification groups are a refinement of the Galois group Gdisplaystyle G of a finite L/Kdisplaystyle L/K Galois extension of local fields. We shall write w,OL,pdisplaystyle w,mathcal O_L,mathfrak p for the valuation, the ring of integers and its maximal ideal for Ldisplaystyle L. As a consequence of Hensel's lemma, one can write OL=OK[α]displaystyle mathcal O_L=mathcal O_K[alpha ] for some α∈Ldisplaystyle alpha in L where OKdisplaystyle O_K is the ring of integers of Kdisplaystyle K.[1] (This is stronger than the primitive element theorem.) Then, for each integer i≥−1displaystyle igeq -1, we define Gidisplaystyle G_i to be the set of all s∈Gdisplaystyle sin G that satisfies the following equivalent conditions.
- (i) sdisplaystyle s operates trivially on OL/pi+1.displaystyle mathcal O_L/mathfrak p^i+1.
- (ii) w(s(x)−x)≥i+1displaystyle w(s(x)-x)geq i+1 for all x∈OLdisplaystyle xin mathcal O_L
- (iii) w(s(α)−α)≥i+1.displaystyle w(s(alpha )-alpha )geq i+1.
The group Gidisplaystyle G_i is called idisplaystyle i-th ramification group. They form a decreasing filtration,
- G−1=G⊃G0⊃G1⊃…∗.displaystyle G_-1=Gsupset G_0supset G_1supset dots *.
In fact, the Gidisplaystyle G_i are normal by (i) and trivial for sufficiently large idisplaystyle i by (iii). For the lowest indices, it is customary to call G0displaystyle G_0 the inertia subgroup of Gdisplaystyle G because of its relation to splitting of prime ideals, while G1displaystyle G_1 the wild inertia subgroup of Gdisplaystyle G. The quotient G0/G1displaystyle G_0/G_1 is called the tame quotient.
The Galois group Gdisplaystyle G and its subgroups Gidisplaystyle G_i are studied by employing the above filtration or, more specifically, the corresponding quotients. In particular,
G/G0=Gal(l/k),displaystyle G/G_0=operatorname Gal (l/k), where l,kdisplaystyle l,k are the (finite) residue fields of L,Kdisplaystyle L,K.[2]
G0=1⇔L/Kdisplaystyle G_0=1Leftrightarrow L/K is unramified.
G1=1⇔L/Kdisplaystyle G_1=1Leftrightarrow L/K is tamely ramified (i.e., the ramification index is prime to the residue characteristic.)
The study of ramification groups reduces to the totally ramified case since one has Gi=(G0)idisplaystyle G_i=(G_0)_i for i≥0displaystyle igeq 0.
One also defines the function iG(s)=w(s(α)−α),s∈Gdisplaystyle i_G(s)=w(s(alpha )-alpha ),sin G. (ii) in the above shows iGdisplaystyle i_G is independent of choice of αdisplaystyle alpha and, moreover, the study of the filtration Gidisplaystyle G_i is essentially equivalent to that of iGdisplaystyle i_G.[3]iGdisplaystyle i_G satisfies the following: for s,t∈Gdisplaystyle s,tin G,
- iG(s)≥i+1⇔s∈Gi.displaystyle i_G(s)geq i+1Leftrightarrow sin G_i.
- iG(tst−1)=iG(s).displaystyle i_G(tst^-1)=i_G(s).
- iG(st)≥miniG(s),iG(t).displaystyle i_G(st)geq mini_G(s),i_G(t).
Fix a uniformizer πdisplaystyle pi of Ldisplaystyle L. Then s↦s(π)/πdisplaystyle smapsto s(pi )/pi induces the injection Gi/Gi+1→UL,i/UL,i+1,i≥0displaystyle G_i/G_i+1to U_L,i/U_L,i+1,igeq 0 where UL,0=OL×,UL,i=1+pidisplaystyle U_L,0=mathcal O_L^times ,U_L,i=1+mathfrak p^i. (The map actually does not depend on the choice of the uniformizer.[4]) It follows from this[5]
G0/G1displaystyle G_0/G_1 is cyclic of order prime to pdisplaystyle p
Gi/Gi+1displaystyle G_i/G_i+1 is a product of cyclic groups of order pdisplaystyle p.
In particular, G1displaystyle G_1 is a p-group and G0displaystyle G_0 is solvable.
The ramification groups can be used to compute the different DL/Kdisplaystyle mathfrak D_L/K of the extension L/Kdisplaystyle L/K and that of subextensions:[6]
- w(DL/K)=∑s≠1iG(s)=∑i=0∞(|Gi|−1).G_i
If Hdisplaystyle H is a normal subgroup of Gdisplaystyle G, then, for σ∈Gdisplaystyle sigma in G, iG/H(σ)=1eL/K∑s↦σiG(s)displaystyle i_G/H(sigma )=1 over e_L/Ksum _smapsto sigma i_G(s).[7]
Combining this with the above one obtains: for a subextension F/Kdisplaystyle F/K corresponding to Hdisplaystyle H,
- vF(DF/K)=1eL/F∑s∉HiG(s).displaystyle v_F(mathfrak D_F/K)=1 over e_L/Fsum _snot in Hi_G(s).
If s∈Gi,t∈Gj,i,j≥1displaystyle sin G_i,tin G_j,i,jgeq 1, then sts−1t−1∈Gi+j+1displaystyle sts^-1t^-1in G_i+j+1.[8] In the terminology of Lazard, this can be understood to mean the Lie algebra gr(G1)=∑i≥1Gi/Gi+1displaystyle operatorname gr (G_1)=sum _igeq 1G_i/G_i+1 is abelian.
Example: the cyclotomic extension
The ramification groups for a cyclotomic extension Kn:=Qp(ζ)/Qpdisplaystyle K_n:=mathbf Q _p(zeta )/mathbf Q _p, where ζdisplaystyle zeta is a pndisplaystyle p^n-th primitive root of unity, can be described explicitly:[9]
- Gs=Gal(Kn/Ke),displaystyle G_s=Gal(K_n/K_e),
where e is chosen such that pe−1≤s<pedisplaystyle p^e-1leq s<p^e.
Example: a quartic extension
Let K be the extension of Q2 generated by x1=2+2 displaystyle x_1=sqrt 2+sqrt 2 . The conjugates of x1 are x2=x2=2−2 ,displaystyle x_2=sqrt 2-sqrt 2 , x3 = −x1, x4 = −x2.
A little computation shows that the quotient of any two of these is a unit. Hence they all generate the same ideal; call it π. 2displaystyle sqrt 2 generates π2; (2)=π4.
Now x1 − x3 = 2x1, which is in π5.
and x1−x2=4−22,displaystyle x_1-x_2=sqrt 4-2sqrt 2,,, which is in π3.
Various methods show that the Galois group of K is C4displaystyle C_4, cyclic of order 4. Also:
- G0=G1=G2=C4.displaystyle G_0=G_1=G_2=C_4.
and G3=G4=(13)(24).displaystyle G_3=G_4=(13)(24).
w(DK/Q2)=3+3+3+1+1=11,displaystyle w(mathfrak D_K/Q_2)=3+3+3+1+1=11, so that the different DK/Q2=π11displaystyle mathfrak D_K/Q_2=pi ^11
x1 satisfies x4 − 4x2 + 2, which has discriminant 2048 = 211.
Ramification groups in upper numbering
If udisplaystyle u is a real number ≥−1displaystyle geq -1, let Gudisplaystyle G_u denote Gidisplaystyle G_i where i the least integer ≥udisplaystyle geq u. In other words, s∈Gu⇔iG(s)≥u+1.displaystyle sin G_uLeftrightarrow i_G(s)geq u+1. Define ϕdisplaystyle phi by[10]
- ϕ(u)=∫0udt(G0:Gt)displaystyle phi (u)=int _0^udt over (G_0:G_t)
where, by convention, (G0:Gt)displaystyle (G_0:G_t) is equal to (G−1:G0)−1displaystyle (G_-1:G_0)^-1 if t=−1displaystyle t=-1 and is equal to 1displaystyle 1 for −1<t≤0displaystyle -1<tleq 0.[11] Then ϕ(u)=udisplaystyle phi (u)=u for −1≤u≤0displaystyle -1leq uleq 0. It is immediate that ϕdisplaystyle phi is continuous and strictly increasing, and thus has the continuous inverse function ψdisplaystyle psi defined on [−1,∞)displaystyle [-1,infty ). Define
Gv=Gψ(v)displaystyle G^v=G_psi (v).
Gvdisplaystyle G^v is then called the v-th ramification group in upper numbering. In other words, Gϕ(u)=Gudisplaystyle G^phi (u)=G_u. Note G−1=G,G0=G0displaystyle G^-1=G,G^0=G_0. The upper numbering is defined so as to be compatible with passage to quotients:[12] if Hdisplaystyle H is normal in Gdisplaystyle G, then
(G/H)v=GvH/Hdisplaystyle (G/H)^v=G^vH/H for all vdisplaystyle v
(whereas lower numbering is compatible with passage to subgroups.)
Herbrand's theorem states that the ramification groups in the lower numbering satisfy GuH/H=(G/H)vdisplaystyle G_uH/H=(G/H)_v (for v=ϕL/F(u)displaystyle v=phi _L/F(u) where L/Fdisplaystyle L/F is the subextension corresponding to Hdisplaystyle H), and that the ramification groups in the upper numbering satisfy GuH/H=(G/H)udisplaystyle G^uH/H=(G/H)^u.[13][14] This allows one to define ramification groups in the upper numbering for infinite Galois extensions (such as the absolute Galois group of a local field) from the inverse system of ramification groups for finite subextensions.
The upper numbering for an abelian extension is important because of the Hasse–Arf theorem. It states that if Gdisplaystyle G is abelian, then the jumps in the filtration Gvdisplaystyle G^v are integers; i.e., Gi=Gi+1displaystyle G_i=G_i+1 whenever ϕ(i)displaystyle phi (i) is not an integer.[15]
The upper numbering is compatible with the filtration of the norm residue group by the unit groups under the Artin isomorphism. The image of Gn(L/K)displaystyle G^n(L/K) under the isomorphism
- G(L/K)ab↔K∗/NL/K(L∗)displaystyle G(L/K)^mathrm ab leftrightarrow K^*/N_L/K(L^*)
is just[16]
- UKn/(UKn∩NL/K(L∗)) .displaystyle U_K^n/(U_K^ncap N_L/K(L^*)) .
See also
- Ramification theory of valuations
Notes
^ Neukirch (1999) p.178
^ since G/G0displaystyle G/G_0 is canonically isomorphic to the decomposition group.
^ Serre (1979) p.62
^ Conrad
^ Use UL,0/UL,1≃l×displaystyle U_L,0/U_L,1simeq l^times and UL,i/UL,i+1≈l+displaystyle U_L,i/U_L,i+1approx l^+
^ Serre (1979) 4.1 Prop.4, p.64
^ Serre (1979) 4.1. Prop.3, p.63
^ Serre (1979) 4.2. Proposition 10.
^ Serre, Corps locaux. Ch. IV, §4, Proposition 18
^ Serre (1967) p.156
^ Neukirch (1999) p.179
^ Serre (1967) p.155
^ Neukirch (1999) p.180
^ Serre (1979) p.75
^ Neukirch (1999) p.355
^ Snaith (1994) pp.30-31
References
- B. Conrad, Math 248A. Higher ramification groups
Fröhlich, A.; Taylor, M.J. (1991). Algebraic number theory. Cambridge studies in advanced mathematics. 27. Cambridge University Press. ISBN 0-521-36664-X. Zbl 0744.11001..mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
Neukirch, Jürgen (1999). Algebraic Number Theory. Grundlehren der mathematischen Wissenschaften. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021.
Serre, Jean-Pierre (1967). "VI. Local class field theory". In Cassels, J.W.S.; Fröhlich, A. Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union. London: Academic Press. pp. 128–161. Zbl 0153.07403.
Serre, Jean-Pierre (1979). Local Fields. Graduate Texts in Mathematics. 67. Translated by Greenberg, Marvin Jay. Berlin, New York: Springer-Verlag. ISBN 0-387-90424-7. MR 0554237. Zbl 0423.12016.
Snaith, Victor P. (1994). Galois module structure. Fields Institute monographs. Providence, RI: American Mathematical Society. ISBN 0-8218-0264-X. Zbl 0830.11042.