Frobenius endomorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic p, an important class which includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.
Contents
1 Definition
2 Fixed points of the Frobenius endomorphism
3 As a generator of Galois groups
4 Frobenius for schemes
4.1 The absolute Frobenius morphism
4.2 Restriction and extension of scalars by Frobenius
4.3 Relative Frobenius
4.4 Arithmetic Frobenius
4.5 Geometric Frobenius
4.6 Arithmetic and geometric Frobenius as Galois actions
5 Frobenius for local fields
6 Frobenius for global fields
7 Examples
8 See also
9 References
Definition
Let R be a commutative ring with prime characteristic p (an integral domain of positive characteristic always has prime characteristic, for example). The Frobenius endomorphism F is defined by
- F(r)=rpdisplaystyle F(r)=r^p
for all r in R. It respects the multiplication of R:
- F(rs)=(rs)p=rpsp=F(r)F(s) ,displaystyle F(rs)=(rs)^p=r^ps^p=F(r)F(s) ,
and F(1) is clearly 1 also. What is interesting, however, is that it also respects the addition of R. The expression (r + s)p can be expanded using the binomial theorem. Because p is prime, it divides p! but not any q! for q < p; it therefore will divide the numerator, but not the denominator, of the explicit formula of the binomial coefficients
- p!k!(p−k)!,displaystyle frac p!k!(p-k)!,
if 1 ≤ k ≤ p − 1. Therefore, the coefficients of all the terms except rp and sp are divisible by p, the characteristic, and hence they vanish.[1] Thus
- F(r+s)=(r+s)p=rp+sp=F(r)+F(s) .displaystyle F(r+s)=(r+s)^p=r^p+s^p=F(r)+F(s) .
This shows that F is a ring homomorphism.
If φ : R → S is a homomorphism of rings of characteristic p, then
- ϕ(xp)=ϕ(x)p.displaystyle phi (x^p)=phi (x)^p.
If FR and FS are the Frobenius endomorphisms of R and S, then this can be rewritten as:
- ϕ∘FR=FS∘ϕ.displaystyle phi circ F_R=F_Scirc phi .
This means that the Frobenius endomorphism is a natural transformation from the identity functor on the category of characteristic p rings to itself.
If the ring R is a ring with no nilpotent elements, then the Frobenius endomorphism is injective: F(r) = 0 means rp = 0, which by definition means that r is nilpotent of order at most p. In fact, this is an if and only if, because if r is any nilpotent, then one of its powers will be nilpotent of order at most p. In particular, if R is a field then the Frobenius endomorphism is injective.
The Frobenius morphism is not necessarily surjective, even when R is a field. For example, let K = Fp(t) be the finite field of p elements together with a single transcendental element; equivalently, K is the field of rational functions with coefficients in Fp. Then the image of F does not contain t. If it did, then there would be a rational function q(t)/r(t) whose p-th power q(t)p/r(t)p would equal t. But the degree of this p-th power is p deg(q) − p deg(r), which is a multiple of p. In particular, it can't be 1, which is the degree of t. This is a contradiction; so t is not in the image of F.
A field K is called perfect if either it is of characteristic zero or it is of positive characteristic and its Frobenius endomorphism is an automorphism. For example, all finite fields are perfect.
Fixed points of the Frobenius endomorphism
Consider the finite field Fp. By Fermat's little theorem, every element x of Fp satisfies xp = x. Equivalently, it is a root of the polynomial Xp − X. The elements of Fp therefore determine p roots of this equation, and because this equation has degree p it has no more than p roots over any extension. In particular, if K is an algebraic extension of Fp (such as the algebraic closure or another finite field), then Fp is the fixed field of the Frobenius automorphism of K.
Let R be a ring of characteristic p > 0. If R is an integral domain, then by the same reasoning, the fixed points of Frobenius are the elements of the prime field. However, if R is not a domain, then Xp − X may have more than p roots; for example, this happens if R = Fp × Fp.
A similar property is enjoyed on the finite field Fpedisplaystyle mathbf F _p^e by the eth iterate of the Frobenius automorphism: Every element of Fpedisplaystyle mathbf F _p^e is a root of Xpe−Xdisplaystyle X^p^e-X, so if K is an algebraic extension of Fpedisplaystyle mathbf F _p^e and F is the Frobenius automorphism of K, then the fixed field of Fe is Fpedisplaystyle mathbf F _p^e. If R is a domain which is an Fpedisplaystyle mathbf F _p^e-algebra, then the fixed points of the eth iterate of Frobenius are the elements of the image of Fpedisplaystyle mathbf F _p^e.
Iterating the Frobenius map gives a sequence of elements in R:
- x,xp,xp2,xp3,….displaystyle x,x^p,x^p^2,x^p^3,ldots .
This sequence of iterates is used in defining the Frobenius closure and the tight closure of an ideal.
As a generator of Galois groups
The Galois group of an extension of finite fields is generated by an iterate of the Frobenius automorphism. First, consider the case where the ground field is the prime field. Let Fq be the finite field of q elements, where q = pe. The Frobenius automorphism F of Fq fixes the prime field Fp, so it is an element of the Galois group Gal(Fq/Fp). In fact, since Fq×displaystyle mathbf F _q^times is cyclic with q − 1 elements,
we know that the Galois group is cyclic and F is a generator. The order of F is e because Fe acts on an element x by sending it to xq, and this is the identity on elements of Fq. Every automorphism of Fq is a power of F, and the generators are the powers Fi with i coprime to e.
Now consider the finite field Fqf as an extension of Fq. The Frobenius automorphism F of Fqf does not fix the ground field Fq, but its e-th iterate Fe does. The Galois group Gal(Fqf /Fq) is cyclic of order f and is generated by Fe. It is the subgroup of Gal(Fqf /Fp) generated by Fe. The generators of Gal(Fqf /Fq) are the powers Fei where i is coprime to f.
The Frobenius automorphism is not a generator of the absolute Galois group
- Gal(Fq¯/Fq),displaystyle operatorname Gal left(overline mathbf F _q/mathbf F _qright),
because this Galois group is isomorphic to the profinite integers
- Z^=lim←nZ/nZ,displaystyle widehat mathbf Z =varprojlim _nmathbf Z /nmathbf Z ,
which are not cyclic. However, because the Frobenius automorphism is a generator of the Galois group of every finite extension of Fq, it is a generator of every finite quotient of the absolute Galois group. Consequently, it is a topological generator in the usual Krull topology on the absolute Galois group.
Frobenius for schemes
There are several different ways to define the Frobenius morphism for a scheme. The most fundamental is the absolute Frobenius morphism. However, the absolute Frobenius morphism behaves poorly in the relative situation because it pays no attention to the base scheme. There are several different ways of adapting the Frobenius morphism to the relative situation, each of which is useful in certain situations.
The absolute Frobenius morphism
Suppose that X is a scheme of characteristic p > 0. Choose an open affine subset U = Spec A of X. The ring A is an Fp-algebra, so it admits a Frobenius endomorphism. If V is an open affine subset of U, then by the naturality of Frobenius, the Frobenius morphism on U, when restricted to V, is the Frobenius morphism on V. Consequently, the Frobenius morphism glues to give an endomorphism of X. This endomorphism is called the absolute Frobenius morphism of X. By definition, it is a homeomorphism of X with itself. The absolute Frobenius morphism is a natural transformation from the identity functor on the category of Fp-schemes to itself.
If X is an S-scheme and the Frobenius morphism of S is the identity, then the absolute Frobenius morphism is a morphism of S-schemes. In general, however, it is not. For example, consider the ring A=Fp2displaystyle A=mathbf F _p^2. Let X and S both equal Spec A with the structure map X → S being the identity. The Frobenius morphism on A sends a to ap. It is not a morphism of Fp2displaystyle mathbf F _p^2-algebras. If it were, then multiplying by an element b in Fp2displaystyle mathbf F _p^2 would commute with applying the Frobenius endomorphism. But this is not true because:
- b⋅a=ba≠F(b)⋅a=bpa.displaystyle bcdot a=baneq F(b)cdot a=b^pa.
The former is the action of b in the Fp2displaystyle mathbf F _p^2-algebra structure that A begins with, and the latter is the action of Fp2displaystyle mathbf F _p^2 induced by Frobenius. Consequently, the Frobenius morphism on Spec A is not a morphism of Fp2displaystyle mathbf F _p^2-schemes.
The absolute Frobenius morphism is a purely inseparable morphism of degree p. Its differential is zero. It preserves products, meaning that for any two schemes X and Y, FX×Y = FX × FY.
Restriction and extension of scalars by Frobenius
Suppose that φ : X → S is the structure morphism for an S-scheme X. The base scheme S has a Frobenius morphism FS. Composing φ with FS results in an S-scheme XF called the restriction of scalars by Frobenius. The restriction of scalars is actually a functor, because an S-morphism X → Y induces an S-morphism XF → YF.
For example, consider a ring A of characteristic p > 0 and a finitely presented algebra over A:
- R=A[X1,…,Xn]/(f1,…,fm).displaystyle R=A[X_1,ldots ,X_n]/(f_1,ldots ,f_m).
The action of A on R is given by:
- c⋅∑aαXα=∑caαXα,displaystyle ccdot sum a_alpha X^alpha =sum ca_alpha X^alpha ,
where α is a multi-index. Let X = Spec R. Then XF is the affine scheme Spec R, but its structure morphism Spec R → Spec A, and hence the action of A on R, is different:
- c⋅∑aαXα=∑F(c)aαXα=∑cpaαXα.displaystyle ccdot sum a_alpha X^alpha =sum F(c)a_alpha X^alpha =sum c^pa_alpha X^alpha .
Because restriction of scalars by Frobenius is simply composition, many properties of X are inherited by XF under appropriate hypotheses on the Frobenius morphism. For example, if X and SF are both finite type, then so is XF.
The extension of scalars by Frobenius is defined to be:
- X(p)=X×SSF.displaystyle X^(p)=Xtimes _SS_F.
The projection onto the S factor makes X(p) an S-scheme. If S is not clear from the context, then X(p) is denoted by X(p/S). Like restriction of scalars, extension of scalars is a functor: An S-morphism X → Y determines an S-morphism X(p) → Y(p).
As before, consider a ring A and a finitely presented algebra R over A, and again let X = Spec R. Then:
- X(p)=SpecR⊗AAF.displaystyle X^(p)=operatorname Spec Rotimes _AA_F.
A global section of X(p) is of the form:
- ∑i(∑αaiαXα)⊗bi=∑i∑αXα⊗aiαpbi,displaystyle sum _ileft(sum _alpha a_ialpha X^alpha right)otimes b_i=sum _isum _alpha X^alpha otimes a_ialpha ^pb_i,
where α is a multi-index and every aiα and bi is an element of A. The action of an element c of A on this section is:
- c⋅∑i(∑αaiαXα)⊗bi=∑i(∑αaiαXα)⊗bic.displaystyle ccdot sum _ileft(sum _alpha a_ialpha X^alpha right)otimes b_i=sum _ileft(sum _alpha a_ialpha X^alpha right)otimes b_ic.
Consequently, X(p) is isomorphic to:
- SpecA[X1,…,Xn]/(f1(p),…,fm(p)),displaystyle operatorname Spec A[X_1,ldots ,X_n]/left(f_1^(p),ldots ,f_m^(p)right),
where, if:
- fj=∑βfjβXβ,displaystyle f_j=sum _beta f_jbeta X^beta ,
then:
- fj(p)=∑βfjβpXβ.displaystyle f_j^(p)=sum _beta f_jbeta ^pX^beta .
A similar description holds for arbitrary A-algebras R.
Because extension of scalars is base change, it preserves limits and coproducts. This implies in particular that if X has an algebraic structure defined in terms of finite limits (such as being a group scheme), then so does X(p). Furthermore, being a base change means that extension of scalars preserves properties such as being of finite type, finite presentation, separated, affine, and so on.
Extension of scalars is well-behaved with respect to base change: Given a morphism S′ → S, there is a natural isomorphism:
- X(p/S)×SS′≅(X×SS′)(p/S′).displaystyle X^(p/S)times _SS'cong (Xtimes _SS')^(p/S').
Relative Frobenius
The relative Frobenius morphism of an S-scheme X is the morphism:
- FX/S:X→X(p)displaystyle F_X/S:Xto X^(p)
defined by:
- FX/S=(FX,1S).displaystyle F_X/S=(F_X,1_S).
Because the absolute Frobenius morphism is natural, the relative Frobenius morphism is a morphism of S-schemes.
Consider, for example, the A-algebra:
- R=A[X1,…,Xn]/(f1,…,fm).displaystyle R=A[X_1,ldots ,X_n]/(f_1,ldots ,f_m).
We have:
- R(p)=A[X1,…,Xn]/(f1(p),…,fm(p)).displaystyle R^(p)=A[X_1,ldots ,X_n]/(f_1^(p),ldots ,f_m^(p)).
The relative Frobenius morphism is the homomorphism R(p) → R defined by:
- ∑i∑αXα⊗aiα↦∑i∑αaiαXpα.displaystyle sum _isum _alpha X^alpha otimes a_ialpha mapsto sum _isum _alpha a_ialpha X^palpha .
Relative Frobenius is compatible with base change in the sense that, under the natural isomorphism of X(p/S) ×SS′ and (X ×SS′)(p/S′), we have:
- FX/S×1S′=FX×SS′/S′.displaystyle F_X/Stimes 1_S'=F_Xtimes _SS'/S'.
Relative Frobenius is a universal homeomorphism. If X → S is an open immersion, then it is the identity. If X → S is a closed immersion determined by an ideal sheaf I of OS, then X(p) is determined by the ideal sheaf Ip and relative Frobenius is the augmentation map OS/Ip → OS/I.
X is unramified over S if and only if FX/S is unramified and if and only if FX/S is a monomorphism. X is étale over S if and only if FX/S is étale and if and only if FX/S is an isomorphism.
Arithmetic Frobenius
The arithmetic Frobenius morphism of an S-scheme X is a morphism:
- FX/Sa:X(p)→X×SS≅Xdisplaystyle F_X/S^a:X^(p)to Xtimes _SScong X
defined by:
- FX/Sa=1X×FS.displaystyle F_X/S^a=1_Xtimes F_S.
That is, it is the base change of FS by 1X.
Again, if:
- R=A[X1,…,Xn]/(f1,…,fm),displaystyle R=A[X_1,ldots ,X_n]/(f_1,ldots ,f_m),
- R(p)=A[X1,…,Xn]/(f1,…,fm)⊗AAF,displaystyle R^(p)=A[X_1,ldots ,X_n]/(f_1,ldots ,f_m)otimes _AA_F,
then the arithmetic Frobenius is the homomorphism:
- ∑i(∑αaiαXα)⊗bi↦∑i∑αaiαbipXα.displaystyle sum _ileft(sum _alpha a_ialpha X^alpha right)otimes b_imapsto sum _isum _alpha a_ialpha b_i^pX^alpha .
If we rewrite R(p) as:
- R(p)=A[X1,…,Xn]/(f1(p),…,fm(p)),displaystyle R^(p)=A[X_1,ldots ,X_n]/left(f_1^(p),ldots ,f_m^(p)right),
then this homomorphism is:
- ∑aαXα↦∑aαpXα.displaystyle sum a_alpha X^alpha mapsto sum a_alpha ^pX^alpha .
Geometric Frobenius
Assume that the absolute Frobenius morphism of S is invertible with inverse FS−1displaystyle F_S^-1. Let SF−1displaystyle S_F^-1 denote the S-scheme FS−1:S→Sdisplaystyle F_S^-1:Sto S. Then there is an extension of scalars of X by FS−1displaystyle F_S^-1:
- X(1/p)=X×SSF−1.displaystyle X^(1/p)=Xtimes _SS_F^-1.
If:
- R=A[X1,…,Xn]/(f1,…,fm),displaystyle R=A[X_1,ldots ,X_n]/(f_1,ldots ,f_m),
then extending scalars by FS−1displaystyle F_S^-1 gives:
- R(1/p)=A[X1,…,Xn]/(f1,…,fm)⊗AAF−1.displaystyle R^(1/p)=A[X_1,ldots ,X_n]/(f_1,ldots ,f_m)otimes _AA_F^-1.
If:
- fj=∑βfjβXβ,displaystyle f_j=sum _beta f_jbeta X^beta ,
then we write:
- fj(1/p)=∑βfjβ1/pXβ,displaystyle f_j^(1/p)=sum _beta f_jbeta ^1/pX^beta ,
and then there is an isomorphism:
- R(1/p)≅A[X1,…,Xn]/(f1(1/p),…,fm(1/p)).displaystyle R^(1/p)cong A[X_1,ldots ,X_n]/(f_1^(1/p),ldots ,f_m^(1/p)).
The geometric Frobenius morphism of an S-scheme X is a morphism:
- FX/Sg:X(1/p)→X×SS≅Xdisplaystyle F_X/S^g:X^(1/p)to Xtimes _SScong X
defined by:
- FX/Sg=1X×FS−1.displaystyle F_X/S^g=1_Xtimes F_S^-1.
It is the base change of FS−1displaystyle F_S^-1 by 1X.
Continuing our example of A and R above, geometric Frobenius is defined to be:
- ∑i(∑αaiαXα)⊗bi↦∑i∑αaiαbi1/pXα.displaystyle sum _ileft(sum _alpha a_ialpha X^alpha right)otimes b_imapsto sum _isum _alpha a_ialpha b_i^1/pX^alpha .
After rewriting R(1/p) in terms of fj(1/p)displaystyle f_j^(1/p), geometric Frobenius is:
- ∑aαXα↦∑aα1/pXα.displaystyle sum a_alpha X^alpha mapsto sum a_alpha ^1/pX^alpha .
Arithmetic and geometric Frobenius as Galois actions
Suppose that the Frobenius morphism of S is an isomorphism. Then it generates a subgroup of the automorphism group of S. If S = Spec k is the spectrum of a finite field, then its automorphism group is the Galois group of the field over the prime field, and the Frobenius morphism and its inverse are both generators of the automorphism group. In addition, X(p) and X(1/p) may be identified with X. The arithmetic and geometric Frobenius morphisms are then endomorphisms of X, and so they lead to an action of the Galois group of k on X.
Consider the set of K-points X(K). This set comes with a Galois action: Each such point x corresponds to a homomorphism OX → k(x) ≅ K from the structure sheaf to the residue field at x, and the action of Frobenius on x is the application of the Frobenius morphism to the residue field. This Galois action agrees with the action of arithmetic Frobenius: The composite morphism
- OX→k(x)→Fk(x)displaystyle mathcal O_Xto k(x)xrightarrow overset Fk(x)
is the same as the composite morphism:
- OX→FX/SaOX→k(x)displaystyle mathcal O_Xxrightarrow overset F_X/S^amathcal O_Xto k(x)
by the definition of the arithmetic Frobenius. Consequently, arithmetic Frobenius explicitly exhibits the action of the Galois group on points as an endomorphism of X.
Frobenius for local fields
Given an unramified finite extension L/K of local fields, there is a concept of Frobenius endomorphism which induces the Frobenius endomorphism in the corresponding extension of residue fields.[2]
Suppose L/K is an unramified extension of local fields, with ring of integers OK of K such that the residue field, the integers of K modulo their unique maximal ideal φ, is a finite field of order q, where q is a power of a prime. If Φ is a prime of L lying over φ, that L/K is unramified means by definition that the integers of L modulo Φ, the residue field of L, will be a finite field of order qf extending the residue field of K where f is the degree of L/K. We may define the Frobenius map for elements of the ring of integers OL of L as an automorphism sΦ of L such that
- sΦ(x)≡xqmodΦ.displaystyle s_Phi (x)equiv x^qmod Phi .
Frobenius for global fields
In algebraic number theory, Frobenius elements are defined for extensions L/K of global fields that are finite Galois extensions for prime ideals Φ of L that are unramified in L/K. Since the extension is unramified the decomposition group of Φ is the Galois group of the extension of residue fields. The Frobenius element then can be defined for elements of the ring of integers of L as in the local case, by
- sΦ(x)≡xqmodΦ,displaystyle s_Phi (x)equiv x^qmod Phi ,
where q is the order of the residue field OK/(Φ ∩ OK).
Lifts of the Frobenius are in correspondence with p-derivations.
Examples
The polynomial
- x5 − x − 1
has discriminant
19 × 151,
and so is unramified at the prime 3; it is also irreducible mod 3. Hence adjoining a root ρ of it to the field of 3-adic numbers Q3 gives an unramified extension Q3(ρ) of Q3. We may find the image of ρ under the Frobenius map by locating the root nearest to ρ3, which we may do by Newton's method. We obtain an element of the ring of integers Z3[ρ] in this way; this is a polynomial of degree four in ρ with coefficients in the 3-adic integers Z3. Modulo 38 this polynomial is
ρ3+3(460+183ρ−354ρ2−979ρ3−575ρ4)displaystyle rho ^3+3(460+183rho -354rho ^2-979rho ^3-575rho ^4).
This is algebraic over Q and is the correct global Frobenius image in terms of the embedding of Q into Q3; moreover, the coefficients are algebraic and the result can be expressed algebraically. However, they are of degree 120, the order of the Galois group, illustrating the fact that explicit computations are much more easily accomplished if p-adic results will suffice.
If L/K is an abelian extension of global fields, we get a much stronger congruence since it depends only on the prime φ in the base field K. For an example, consider the extension Q(β) of Q obtained by adjoining a root β satisfying
- β5+β4−4β3−3β2+3β+1=0displaystyle beta ^5+beta ^4-4beta ^3-3beta ^2+3beta +1=0
to Q. This extension is cyclic of order five, with roots
- 2cos2πn11displaystyle 2cos tfrac 2pi n11
for integer n. It has roots which are Chebyshev polynomials of β:
- β2 − 2, β3 − 3β, β5 − 5β3 + 5β
give the result of the Frobenius map for the primes 2, 3 and 5, and so on for larger primes not equal to 11 or of the form 22n + 1 (which split). It is immediately apparent how the Frobenius map gives a result equal mod p to the p-th power of the root β.
See also
- Perfect field
- Frobenioid
- Finite field § Frobenius automorphism and Galois theory
- universal homeomorphism
References
^ This is known as the Freshman's dream.
^ Fröhlich, A.; Taylor, M.J. (1991). Algebraic number theory. Cambridge studies in advanced mathematics. 27. Cambridge University Press. p. 144. ISBN 0-521-36664-X. Zbl 0744.11001..mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em
Hazewinkel, Michiel, ed. (2001) [1994], "Frobenius automorphism", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
Hazewinkel, Michiel, ed. (2001) [1994], "Frobenius endomorphism", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4