Context-sensitive language

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP


In formal language theory, a context-sensitive language is a language that can be defined by a context-sensitive grammar (and equivalently by a noncontracting grammar). Context-sensitive is one of the four types of grammars in the Chomsky hierarchy.




Contents





  • 1 Computational properties


  • 2 Examples


  • 3 Properties of context-sensitive languages


  • 4 See also


  • 5 References




Computational properties


Computationally, a context-sensitive language is equivalent with a linear bounded nondeterministic Turing machine, also called a linear bounded automaton. That is a non-deterministic Turing machine with a tape of only kndisplaystyle kndisplaystyle kn cells, where ndisplaystyle nn is the size of the input and kdisplaystyle kk is a constant associated with the machine. This means that every formal language that can be decided by such a machine is a context-sensitive language, and every context-sensitive language can be decided by such a machine.


This set of languages is also known as NLINSPACE or NSPACE(O(n)), because they can be accepted using linear space on a non-deterministic Turing machine.[1] The class LINSPACE (or DSPACE(O(n))) is defined the same, except using a deterministic Turing machine. Clearly LINSPACE is a subset of NLINSPACE, but it is not known whether LINSPACE=NLINSPACE.[2]



Examples


One of the simplest context-sensitive but not context-free languages is L=anbncn:n≥1displaystyle L=a^nb^nc^n:ngeq 1L=a^nb^nc^n:ngeq 1: the language of all strings consisting of n occurrences of the symbol "a", then n "b"'s, then n "c"'s (abc, aabbcc, aaabbbccc, etc.). A superset of this language, called the Bach language,[3] is defined as the set of all strings where "a", "b" and "c" (or any other set of three symbols) occurs equally often (aabccb, baabcaccb, etc.) and is also context-sensitive.[4][5]


L can be shown to be a context-sensitive language by constructing a linear bounded automaton which accepts L. The language can easily be shown to be neither regular nor context free by applying the respective pumping lemmas for each of the language classes to L.


Similarly:


LCross=ambncmdn:m≥1,n≥1displaystyle L_Cross=a^mb^nc^md^n:mgeq 1,ngeq 1displaystyle L_Cross=a^mb^nc^md^n:mgeq 1,ngeq 1 is another context-sensitive language; the corresponding context-sensitive grammar can be easily projected starting with two context-free grammars generating sentential forms in the formats
amCmdisplaystyle a^mC^mdisplaystyle a^mC^m
and
Bndndisplaystyle B^nd^ndisplaystyle B^nd^n
and then supplementing them with a permutation production like
CB→BCdisplaystyle CBrightarrow BCdisplaystyle CBrightarrow BC, a new starting symbol and standard syntactic sugar.



LMUL3=ambncmn:m≥1,n≥1displaystyle L_MUL3=a^mb^nc^mn:mgeq 1,ngeq 1displaystyle L_MUL3=a^mb^nc^mn:mgeq 1,ngeq 1 is another context-sensitive language (the "3" in the name of this language is intended to mean a ternary alphabet); that is, the "product" operation defines a context-sensitive language (but the "sum" defines only a context-free language as the grammar S→aSc|RRR and R→bRc|bcbcbc shows). Because of the commutative property of the product, the most intuitive grammar for Lmndisplaystyle L_mndisplaystyle L_mn is ambiguous. This problem can be avoided considering a somehow more restrictive definition of the language, e.g. LORDMUL3=ambncmn:1<m<ndisplaystyle L_ORDMUL3=a^mb^nc^mn:1<m<ndisplaystyle L_ORDMUL3=a^mb^nc^mn:1<m<n. This can be specialized to
LMUL1=amn:m>1,n>1displaystyle L_MUL1=a^mn:m>1,n>1displaystyle L_MUL1=a^mn:m>1,n>1 and, from this, to Lm2=am2:m>1displaystyle L_m^2=a^m^2:m>1displaystyle L_m^2=a^m^2:m>1, Lm3=am3:m>1displaystyle L_m^3=a^m^3:m>1displaystyle L_m^3=a^m^3:m>1, etc.



LREP=:w∈Σ∗displaystyle L_REP=w^w:win Sigma ^*displaystyle L_REP=w^w:win Sigma ^* is a context-sensitive language. The corresponding context-sensitive grammar can be obtained as a generalization of the context-sensitive grammars for LSquare=w2:w∈Σ∗displaystyle L_Square=w^2:win Sigma ^*displaystyle L_Square=w^2:win Sigma ^*, LCube=w3:w∈Σ∗displaystyle L_Cube=w^3:win Sigma ^*displaystyle L_Cube=w^3:win Sigma ^*, etc.



LEXP=a2n:n≥1displaystyle L_EXP=a^2^n:ngeq 1displaystyle L_EXP=a^2^n:ngeq 1 is a context-sensitive language[6].



LPRIMES2=wdisplaystyle L_PRIMES2=w:displaystyle L_PRIMES2=w: is a context-sensitive language (the "2" in the name of this language is intended to mean a binary alphabet). This was proved by Hartmanis using pumping lemmas for regular and context-free languages over a binary alphabet and, after that, sketching a linear bounded multitape automaton accepting LPRIMES2displaystyle L_PRIMES2displaystyle L_PRIMES2.[7]



LPRIMES1=ap:p is prime displaystyle L_PRIMES1=a^p:pmbox is prime displaystyle L_PRIMES1=a^p:pmbox is prime is a context-sensitive language (the "1" in the name of this language is intended to mean an unary alphabet). This was credited by A. Salomaa to Matti Soittola by means of a linear bounded automaton over an unary alphabet[8](pages 213-214, exercise 6.8) and also to Marti Penttonen by means of a context-sensitive grammar also over an unary alphabet (See: Formal Languages by A. Salomaa, page 14, Example 2.5).




An example of recursive language that is not context-sensitive is any recursive language whose decision is an EXPSPACE-hard problem, say, the set of pairs of equivalent regular expressions with exponentiation.



Properties of context-sensitive languages


  • The union, intersection, concatenation of two context-sensitive languages is context-sensitive, also the Kleene plus of a context-sensitive language is context-sensitive.[9]

  • The complement of a context-sensitive language is itself context-sensitive[10] a result known as the Immerman–Szelepcsényi theorem.

  • Membership of a string in a language defined by an arbitrary context-sensitive grammar, or by an arbitrary deterministic context-sensitive grammar, is a PSPACE-complete problem.


See also


  • Linear bounded automaton

  • List of parser generators for context-sensitive languages

  • Chomsky hierarchy


  • Indexed languages – a strict subset of the context-sensitive languages

  • Weir hierarchy


References




  1. ^ Rothe, Jörg (2005), Complexity theory and cryptology, Texts in Theoretical Computer Science. An EATCS Series, Berlin: Springer-Verlag, p. 77, ISBN 978-3-540-22147-0, MR 2164257.mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em.


  2. ^ Odifreddi, P. G. (1999), Classical recursion theory. Vol. II, Studies in Logic and the Foundations of Mathematics, 143, Amsterdam: North-Holland Publishing Co., p. 236, ISBN 0-444-50205-X, MR 1718169.


  3. ^ Pullum, Geoffrey K. (1983). Context-freeness and the computer processing of human languages. Proc. 21st Annual Meeting of the ACL.


  4. ^ Bach, E. (1981). "Discontinuous constituents in generalized categorial grammars". NELS, vol. 11, pp. 1–12.


  5. ^ Joshi, A.; Vijay-Shanker, K.; and Weir, D. (1991). "The convergence of mildly context-sensitive grammar formalisms". In: Sells, P., Shieber, S.M. and Wasow, T. (Editors). Foundational Issues in Natural Language Processing. Cambridge MA: Bradford.


  6. ^ Example 9.5 (p. 224) of Hopcroft, John E.; Ullman, Jeffrey D. (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley


  7. ^ J. Hartmanis and H. Shank (Jul 1968). "On the Recognition of Primes by Automata". Journal of the ACM. 15 (3): 382–389. doi:10.1145/321466.321470.


  8. ^ Salomaa, Arto (1969), Theory of Automata,
    ISBN 978-0-08-013376-8, Pergamon, 276 pages. doi:10.1016/C2013-0-02221-9



  9. ^ John E. Hopcroft; Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley.; Exercise 9.10, p.230. In the 2000 edition, the chapter on context-sensitive languages has been omitted.


  10. ^ Immerman, Neil (1988). "Nondeterministic space is closed under complementation" (PDF). SIAM J. Comput. 17 (5): 935–938. doi:10.1137/0217058.



  • Sipser, M. (1996), Introduction to the Theory of Computation, PWS Publishing Co.






Popular posts from this blog

用户:Ww71338ww/绘画

自由群

卑爾根