Context-free language

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP

In formal language theory, a context-free language (CFL) is a language generated by a context-free grammar (CFG).


Context-free languages have many applications in programming languages, in particular, most arithmetic expressions are generated by context-free grammars.




Contents





  • 1 Background

    • 1.1 Context-free grammar


    • 1.2 Automata



  • 2 Examples

    • 2.1 Dyck language



  • 3 Properties

    • 3.1 Context-free parsing


    • 3.2 Closure

      • 3.2.1 Nonclosure under intersection, complement, and difference



    • 3.3 Decidability


    • 3.4 Languages that are not context-free



  • 4 Notes


  • 5 References




Background



Context-free grammar


Different context-free grammars can generate the same context-free language. Intrinsic properties of the language can be distinguished from extrinsic properties of a particular grammar by comparing multiple grammars that describe the language.



Automata


The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing. Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct.



Examples


A model context-free language is L=anbn:n≥1displaystyle L=a^nb^n:ngeq 1L=a^nb^n:ngeq 1, the language of all non-empty even-length strings, the entire first halves of which are a's, and the entire second halves of which are b's. L is generated by the grammar S→aSb | abdisplaystyle Sto aSb~Sto aSb~|~ab.
This language is not regular.
It is accepted by the pushdown automaton M=(q0,q1,qf,a,b,a,z,δ,q0,z,qf)displaystyle M=(q_0,q_1,q_f,a,b,a,z,delta ,q_0,z,q_f)M=(q_0,q_1,q_f,a,b,a,z,delta ,q_0,z,q_f) where δdisplaystyle delta delta is defined as follows:[note 1]


δ(q0,a,z)=(q0,az)δ(q0,a,a)=(q0,aa)δ(q0,b,a)=(q1,ε)δ(q1,b,a)=(q1,ε)δ(q1,ε,z)=(qf,ε)displaystyle beginaligneddelta (q_0,a,z)&=(q_0,az)\delta (q_0,a,a)&=(q_0,aa)\delta (q_0,b,a)&=(q_1,varepsilon )\delta (q_1,b,a)&=(q_1,varepsilon )\delta (q_1,varepsilon ,z)&=(q_f,varepsilon )endaligneddisplaystyle beginaligneddelta (q_0,a,z)&=(q_0,az)\delta (q_0,a,a)&=(q_0,aa)\delta (q_0,b,a)&=(q_1,varepsilon )\delta (q_1,b,a)&=(q_1,varepsilon )\delta (q_1,varepsilon ,z)&=(q_f,varepsilon )endaligned

Unambiguous CFLs are a proper subset of all CFLs: there are inherently ambiguous CFLs. An example of an inherently ambiguous CFL is the union of anbmcmdndisplaystyle n,m>0n,m>0 with anbncmdmdisplaystyle n,m>0n,m>0. This set is context-free, since the union of two context-free languages is always context-free. But there is no way to unambiguously parse strings in the (non-context-free) subset anbncndndisplaystyle a^nb^nc^nd^na^nb^nc^nd^n which is the intersection of these two languages.[1]



Dyck language


The language of all properly matched parentheses is generated by the grammar S→SS | (S) | ε~(S)~Sto SS~|~(S)~|~varepsilon .



Properties



Context-free parsing



The context-free nature of the language makes it simple to parse with a pushdown automaton.


Determining an instance of the membership problem; i.e. given a string wdisplaystyle ww, determine whether w∈L(G)displaystyle win L(G)win L(G) where Ldisplaystyle LL is the language generated by a given grammar Gdisplaystyle GG; is also known as recognition. Context-free recognition for Chomsky normal form grammars was shown by Leslie G. Valiant to be reducible to boolean matrix multiplication, thus inheriting its complexity upper bound of O(n2.3728639).[2][3][note 2]
Conversely, Lillian Lee has shown O(n3−ε) boolean matrix multiplication to be reducible to O(n3−3ε) CFG parsing, thus establishing some kind of lower bound for the latter.[4]


Practical uses of context-free languages require also to produce a derivation tree that exhibits the structure that the grammar associates with the given string. The process of producing this tree is called parsing. Known parsers have a time complexity that is cubic in the size of the string that is parsed.


Formally, the set of all context-free languages is identical to the set of languages accepted by pushdown automata (PDA). Parser algorithms for context-free languages include the CYK algorithm and Earley's Algorithm.


A special subclass of context-free languages are the deterministic context-free languages which are defined as the set of languages accepted by a deterministic pushdown automaton and can be parsed by a LR(k) parser.[5]


See also parsing expression grammar as an alternative approach to grammar and parser.



Closure


Context-free languages are closed under the following operations. That is, if L and P are context-free languages, the following languages are context-free as well:


  • the union L∪Pdisplaystyle Lcup PLcup P of L and P[6]

  • the reversal of L[7]

  • the concatenation L⋅Pdisplaystyle Lcdot PLcdot P of L and P[6]

  • the Kleene star L∗displaystyle L^*L^* of L[6]

  • the image φ(L)displaystyle varphi (L)varphi (L) of L under a homomorphism φdisplaystyle varphi varphi [8]

  • the image φ−1(L)displaystyle varphi ^-1(L)varphi ^-1(L) of L under an inverse homomorphism φ−1displaystyle varphi ^-1varphi ^-1[9]

  • the circular shift of L (the language vu:uv∈Ldisplaystyle vu:uvin Lvu:uvin L)[10]

  • the prefix closure of L (the set of all prefixes of strings from L)[11]

  • the quotient L/R of L by a regular language R[12]


Nonclosure under intersection, complement, and difference


The context-free languages are not closed under intersection. This can be seen by taking the languages A=anbncm∣m,n≥0displaystyle A=a^nb^nc^mmid m,ngeq 0A=a^nb^nc^mmid m,ngeq 0 and B=ambncn∣m,n≥0displaystyle B=a^mb^nc^nmid m,ngeq 0B=a^mb^nc^nmid m,ngeq 0, which are both context-free.[note 3] Their intersection is A∩B=anbncn∣n≥0displaystyle Acap B=a^nb^nc^nmid ngeq 0Acap B=a^nb^nc^nmid ngeq 0, which can be shown to be non-context-free by the pumping lemma for context-free languages. As a consequence, context-free languages cannot be closed under complementation, as for any languages A and B, their intersection can be expressed by union and complement: A∩B=A¯∪B¯¯displaystyle Acap B=overline overline Acup overline BAcap B=overline overline Acup overline B. In particular, context-free language cannot be closed under difference, since complement can be expressed by difference: L¯=Σ∗∖Ldisplaystyle overline L=Sigma ^*setminus Ldisplaystyle overline L=Sigma ^*setminus L.[13]


However, if L is a context-free language and D is a regular language then both their intersection L∩Ddisplaystyle Lcap DLcap D and their difference L∖Ddisplaystyle Lsetminus DLsetminus D are context-free languages.[citation needed]



Decidability


In formal language theory, questions about regular languages are usually decidable, but ones about context-free languages are often not. It is decidable whether such a language is finite, but not whether it contains every possible string, is regular, is unambiguous, or is equivalent to a language with a different grammar.[14]


The following problems are undecidable for arbitrarily given context-free grammars A and B:


  • Equivalence: is L(A)=L(B)displaystyle L(A)=L(B)L(A)=L(B)?[15]

  • Disjointness: is L(A)∩L(B)=∅displaystyle L(A)cap L(B)=emptyset L(A)cap L(B)=emptyset  ?[16] However, the intersection of a context-free language and a regular language is context-free,[17][18] hence the variant of the problem where B is a regular grammar is decidable (see "Emptiness" below).

  • Containment: is L(A)⊆L(B)displaystyle L(A)subseteq L(B)L(A)subseteq L(B) ?[19] Again, the variant of the problem where B is a regular grammar is decidable,[citation needed] while that where A is regular is generally not.[20]

  • Universality: is L(A)=Σ∗displaystyle L(A)=Sigma ^*L(A)=Sigma ^* ?[21]

The following problems are decidable for arbitrary context-free languages:


  • Emptiness: Given a context-free grammar A, is L(A)=∅displaystyle L(A)=emptyset L(A)=emptyset  ?[22]

  • Finiteness: Given a context-free grammar A, is L(A)displaystyle L(A)L(A) finite?[23]

  • Membership: Given a context-free grammar G, and a word wdisplaystyle ww, does w∈L(G)displaystyle win L(G)win L(G) ? Efficient polynomial-time algorithms for the membership problem are the CYK algorithm and Earley's Algorithm.

According to Hopcroft, Motwani, Ullman (2003),[24]
many of the fundamental closure and (un)decidability properties of context-free languages were shown in the 1961 paper of Bar-Hillel, Perles, and Shamir[25]



Languages that are not context-free


The set anbncndndisplaystyle a^nb^nc^nd^na^nb^nc^nd^n is a context-sensitive language, but there does not exist a context-free grammar generating this language.[26] So there exist context-sensitive languages which are not context-free. To prove that a given language is not context-free, one may employ the pumping lemma for context-free languages[25] or a number of other methods, such as Ogden's lemma or Parikh's theorem.[27]



Notes




  1. ^ meaning of δdisplaystyle delta delta 's arguments and results: δ(state1,read,pop)=(state2,push)displaystyle delta (mathrm state _1,mathrm read ,mathrm pop )=(mathrm state _2,mathrm push )delta (mathrm state _1,mathrm read ,mathrm pop )=(mathrm state _2,mathrm push )


  2. ^ In Valiant's papers, O(n2.81) given, the then best known upper bound. See Matrix multiplication#Algorithms for efficient matrix multiplication and Coppersmith–Winograd algorithm for bound improvements since then.


  3. ^ A context-free grammar for the language A is given by the following production rules, taking S as the start symbol: SSc | aTb | ε; TaTb | ε. The grammar for B is analogous.




References




  1. ^ Hopcroft & Ullman 1979, p. 100, Theorem 4.7.


  2. ^ Leslie Valiant (Jan 1974). General context-free recognition in less than cubic time (Technical report). Carnegie Mellon University. p. 11..mw-parser-output cite.citationfont-style:inherit.mw-parser-output qquotes:"""""""'""'".mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  3. ^ Leslie G. Valiant (1975). "General context-free recognition in less than cubic time". Journal of Computer and System Sciences. 10 (2): 308–315. doi:10.1016/s0022-0000(75)80046-8.


  4. ^ Lillian Lee (2002). "Fast Context-Free Grammar Parsing Requires Fast Boolean Matrix Multiplication" (PDF). J ACM. 49 (1): 1–15. arXiv:cs/0112018. doi:10.1145/505241.505242.


  5. ^ Knuth, D. E. (July 1965). "On the translation of languages from left to right" (PDF). Information and Control. 8 (6): 607–639. doi:10.1016/S0019-9958(65)90426-2. Retrieved 29 May 2011.


  6. ^ abc Hopcroft & Ullman 1979, p. 131, Corollary of Theorem 6.1.


  7. ^ Hopcroft & Ullman 1979, p. 142, Exercise 6.4d.


  8. ^ Hopcroft & Ullman 1979, p. 131-132, Corollary of Theorem 6.2.


  9. ^ Hopcroft & Ullman 1979, p. 132, Theorem 6.3.


  10. ^ Hopcroft & Ullman 1979, p. 142-144, Exercise 6.4c.


  11. ^ Hopcroft & Ullman 1979, p. 142, Exercise 6.4b.


  12. ^ Hopcroft & Ullman 1979, p. 142, Exercise 6.4a.


  13. ^ Stephen Scheinberg (1960). "Note on the Boolean Properties of Context Free Languages" (PDF). Information and Control. 3: 372&ndash, 375.


  14. ^ Wolfram, Stephen (2002). A New Kind of Science. Wolfram Media, Inc. p. 1138. ISBN 1-57955-008-8.


  15. ^ Hopcroft & Ullman 1979, p. 203, Theorem 8.12(1).


  16. ^ Hopcroft & Ullman 1979, p. 202, Theorem 8.10.


  17. ^ Salomaa (1973), p. 59, Theorem 6.7


  18. ^ Hopcroft & Ullman 1979, p. 135, Theorem 6.5.


  19. ^ Hopcroft & Ullman 1979, p. 203, Theorem 8.12(2).


  20. ^ Hopcroft & Ullman 1979, p. 203, Theorem 8.12(4).


  21. ^ Hopcroft & Ullman 1979, p. 203, Theorem 8.11.


  22. ^ Hopcroft & Ullman 1979, p. 137, Theorem 6.6(a).


  23. ^ Hopcroft & Ullman 1979, p. 137, Theorem 6.6(b).


  24. ^ John E. Hopcroft; Rajeev Motwani; Jeffrey D. Ullman (2003). Introduction to Automata Theory, Languages, and Computation. Addison Wesley. Here: Sect.7.6, p.304, and Sect.9.7, p.411


  25. ^ ab Yehoshua Bar-Hillel; Micha Asher Perles; Eli Shamir (1961). "On Formal Properties of Simple Phrase-Structure Grammars". Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung. 14 (2): 143–172.


  26. ^ Hopcroft & Ullman 1979.


  27. ^ How to prove that a language is not context-free?



.mw-parser-output .refbeginfont-size:90%;margin-bottom:0.5em.mw-parser-output .refbegin-hanging-indents>ullist-style-type:none;margin-left:0.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>ddmargin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none.mw-parser-output .refbegin-100font-size:100%


  • Seymour Ginsburg (1966). The Mathematical Theory of Context-Free Languages. New York, NY, USA: McGraw-Hill, Inc.


  • Hopcroft, John E.; Ullman, Jeffrey D. (1979). Introduction to Automata Theory, Languages, and Computation (1st ed.). Addison-Wesley.


  • Arto Salomaa (1973). Formal Languages. ACM Monograph Series.


  • Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing. ISBN 0-534-94728-X. Chapter 2: Context-Free Languages, pp. 91–122.

  • Jean-Michel Autebert, Jean Berstel, Luc Boasson, Context-Free Languages and Push-Down Automata, in: G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, Vol. 1, Springer-Verlag, 1997, 111-174.








Popular posts from this blog

用户:Ww71338ww/绘画

自由群

卑爾根