Computer network
Clash Royale CLAN TAG#URR8PPP
Network science | ||||
---|---|---|---|---|
| ||||
| ||||
Network types | ||||
| ||||
Graphs | ||||
| ||||
| ||||
| ||||
Models | ||||
| ||||
| ||||
| ||||
Operating systems | |||||||
---|---|---|---|---|---|---|---|
Common features
A computer network, or data network, is a digital telecommunications network which allows nodes to share resources. In computer networks, computing devices exchange data with each other using connections (data links) between nodes. These data links are established over cable media such as wires or optic cables, or wireless media such as WiFi. Network computer devices that originate, route and terminate the data are called network nodes.[1] Nodes are identified by network addresses, and can include hosts such as personal computers, phones, and servers, as well as networking hardware such as routers and switches. Two such devices can be said to be networked together when one device is able to exchange information with the other device, whether or not they have a direct connection to each other. In most cases, application-specific communications protocols are layered (i.e. carried as payload) over other more general communications protocols. This formidable collection of information technology requires skilled network management to keep it all running reliably. Computer networks support an enormous number of applications and services such as access to the World Wide Web, digital video, digital audio, shared use of application and storage servers, printers, and fax machines, and use of email and instant messaging applications as well as many others. Computer networks differ in the transmission medium used to carry their signals, communications protocols to organize network traffic, the network's size, topology, traffic control mechanism and organizational intent. The best-known computer network is the Internet. Contents
|
Computer network types by spatial scope |
---|
|
A network can be characterized by its physical capacity or its organizational purpose. Use of the network, including user authorization and access rights, differ accordingly.
- Nanoscale network
A nanoscale communication network has key components implemented at the nanoscale including message carriers and leverages physical principles that differ from macroscale communication mechanisms. Nanoscale communication extends communication to very small sensors and actuators such as those found in biological systems and also tends to operate in environments that would be too harsh for classical communication.[23]
- Personal area network
A personal area network (PAN) is a computer network used for communication among computer and different information technological devices close to one person. Some examples of devices that are used in a PAN are personal computers, printers, fax machines, telephones, PDAs, scanners, and even video game consoles. A PAN may include wired and wireless devices. The reach of a PAN typically extends to 10 meters.[24] A wired PAN is usually constructed with USB and FireWire connections while technologies such as Bluetooth and infrared communication typically form a wireless PAN.
- Local area network
A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as a home, school, office building, or closely positioned group of buildings. Each computer or device on the network is a node. Wired LANs are most likely based on Ethernet technology. Newer standards such as ITU-T G.hn also provide a way to create a wired LAN using existing wiring, such as coaxial cables, telephone lines, and power lines.[25]
The defining characteristics of a LAN, in contrast to a wide area network (WAN), include higher data transfer rates, limited geographic range, and lack of reliance on leased lines to provide connectivity. Current Ethernet or other IEEE 802.3 LAN technologies operate at data transfer rates up to 100 Gbit/s, standardized by IEEE in 2010.[26] Currently, 400 Gbit/s Ethernet is being developed.
A LAN can be connected to a WAN using a router.
- Home area network
A home area network (HAN) is a residential LAN used for communication between digital devices typically deployed in the home, usually a small number of personal computers and accessories, such as printers and mobile computing devices. An important function is the sharing of Internet access, often a broadband service through a cable TV or digital subscriber line (DSL) provider.
- Storage area network
A storage area network (SAN) is a dedicated network that provides access to consolidated, block level data storage. SANs are primarily used to make storage devices, such as disk arrays, tape libraries, and optical jukeboxes, accessible to servers so that the devices appear like locally attached devices to the operating system. A SAN typically has its own network of storage devices that are generally not accessible through the local area network by other devices. The cost and complexity of SANs dropped in the early 2000s to levels allowing wider adoption across both enterprise and small to medium-sized business environments.
- Campus area network
A campus area network (CAN) is made up of an interconnection of LANs within a limited geographical area. The networking equipment (switches, routers) and transmission media (optical fiber, copper plant, Cat5 cabling, etc.) are almost entirely owned by the campus tenant / owner (an enterprise, university, government, etc.).
For example, a university campus network is likely to link a variety of campus buildings to connect academic colleges or departments, the library, and student residence halls.
- Backbone network
A backbone network is part of a computer network infrastructure that provides a path for the exchange of information between different LANs or sub-networks. A backbone can tie together diverse networks within the same building, across different buildings, or over a wide area.
For example, a large company might implement a backbone network to connect departments that are located around the world. The equipment that ties together the departmental networks constitutes the network backbone. When designing a network backbone, network performance and network congestion are critical factors to take into account. Normally, the backbone network's capacity is greater than that of the individual networks connected to it.
Another example of a backbone network is the Internet backbone, which is the set of wide area networks (WANs) and core routers that tie together all networks connected to the Internet.
- Metropolitan area network
A Metropolitan area network (MAN) is a large computer network that usually spans a city or a large campus.
- Wide area network
A wide area network (WAN) is a computer network that covers a large geographic area such as a city, country, or spans even intercontinental distances. A WAN uses a communications channel that combines many types of media such as telephone lines, cables, and air waves. A WAN often makes use of transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.
- Enterprise private network
An enterprise private network is a network that a single organization builds to interconnect its office locations (e.g., production sites, head offices, remote offices, shops) so they can share computer resources.
- Virtual private network
A virtual private network (VPN) is an overlay network in which some of the links between nodes are carried by open connections or virtual circuits in some larger network (e.g., the Internet) instead of by physical wires. The data link layer protocols of the virtual network are said to be tunneled through the larger network when this is the case. One common application is secure communications through the public Internet, but a VPN need not have explicit security features, such as authentication or content encryption. VPNs, for example, can be used to separate the traffic of different user communities over an underlying network with strong security features.
VPN may have best-effort performance, or may have a defined service level agreement (SLA) between the VPN customer and the VPN service provider. Generally, a VPN has a topology more complex than point-to-point.
- Global area network
A global area network (GAN) is a network used for supporting mobile across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is handing off user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial wireless LANs.[27]
Organizational scope
Networks are typically managed by the organizations that own them. Private enterprise networks may use a combination of intranets and extranets. They may also provide network access to the Internet, which has no single owner and permits virtually unlimited global connectivity.
Intranet
An intranet is a set of networks that are under the control of a single administrative entity. The intranet uses the IP protocol and IP-based tools such as web browsers and file transfer applications. The administrative entity limits use of the intranet to its authorized users. Most commonly, an intranet is the internal LAN of an organization. A large intranet typically has at least one web server to provide users with organizational information. An intranet is also anything behind the router on a local area network.
Extranet
An extranet is a network that is also under the administrative control of a single organization, but supports a limited connection to a specific external network. For example, an organization may provide access to some aspects of its intranet to share data with its business partners or customers. These other entities are not necessarily trusted from a security standpoint. Network connection to an extranet is often, but not always, implemented via WAN technology.
Internetwork
An internetwork is the connection of multiple computer networks via a common routing technology using routers.
Internet
The Internet is the largest example of an internetwork. It is a global system of interconnected governmental, academic, corporate, public, and private computer networks. It is based on the networking technologies of the Internet Protocol Suite. It is the successor of the Advanced Research Projects Agency Network (ARPANET) developed by DARPA of the United States Department of Defense. The Internet is also the communications backbone underlying the World Wide Web (WWW).
Participants in the Internet use a diverse array of methods of several hundred documented, and often standardized, protocols compatible with the Internet Protocol Suite and an addressing system (IP addresses) administered by the Internet Assigned Numbers Authority and address registries. Service providers and large enterprises exchange information about the reachability of their address spaces through the Border Gateway Protocol (BGP), forming a redundant worldwide mesh of transmission paths.
Darknet
A darknet is an overlay network, typically running on the Internet, that is only accessible through specialized software. A darknet is an anonymizing network where connections are made only between trusted peers — sometimes called "friends" (F2F)[28] — using non-standard protocols and ports.
Darknets are distinct from other distributed peer-to-peer networks as sharing is anonymous (that is, IP addresses are not publicly shared), and therefore users can communicate with little fear of governmental or corporate interference.[29]
Routing
Routing is the process of selecting network paths to carry network traffic. Routing is performed for many kinds of networks, including circuit switching networks and packet switched networks.
In packet switched networks, routing directs packet forwarding (the transit of logically addressed network packets from their source toward their ultimate destination) through intermediate nodes. Intermediate nodes are typically network hardware devices such as routers, bridges, gateways, firewalls, or switches. General-purpose computers can also forward packets and perform routing, though they are not specialized hardware and may suffer from limited performance. The routing process usually directs forwarding on the basis of routing tables, which maintain a record of the routes to various network destinations. Thus, constructing routing tables, which are held in the router's memory, is very important for efficient routing.
There are usually multiple routes that can be taken, and to choose between them, different elements can be considered to decide which routes get installed into the routing table, such as (sorted by priority):
Prefix-Length: where longer subnet masks are preferred (independent if it is within a routing protocol or over different routing protocol)
Metric: where a lower metric/cost is preferred (only valid within one and the same routing protocol)
Administrative distance: where a lower distance is preferred (only valid between different routing protocols)
Most routing algorithms use only one network path at a time. Multipath routing techniques enable the use of multiple alternative paths.
Routing, in a more narrow sense of the term, is often contrasted with bridging in its assumption that network addresses are structured and that similar addresses imply proximity within the network. Structured addresses allow a single routing table entry to represent the route to a group of devices. In large networks, structured addressing (routing, in the narrow sense) outperforms unstructured addressing (bridging). Routing has become the dominant form of addressing on the Internet. Bridging is still widely used within localized environments.
Network service
Network services are applications hosted by servers on a computer network, to provide some functionality for members or users of the network, or to help the network itself to operate.
The World Wide Web, E-mail,[30]printing and network file sharing are examples of well-known network services. Network services such as DNS (Domain Name System) give names for IP and MAC addresses (people remember names like “nm.lan” better than numbers like “210.121.67.18”),[31] and DHCP to ensure that the equipment on the network has a valid IP address.[32]
Services are usually based on a service protocol that defines the format and sequencing of messages between clients and servers of that network service.
Network performance
Quality of service
Depending on the installation requirements, network performance is usually measured by the quality of service of a telecommunications product. The parameters that affect this typically can include throughput, jitter, bit error rate and latency.
The following list gives examples of network performance measures for a circuit-switched network and one type of packet-switched network, viz. ATM:
- Circuit-switched networks: In circuit switched networks, network performance is synonymous with the grade of service. The number of rejected calls is a measure of how well the network is performing under heavy traffic loads.[33] Other types of performance measures can include the level of noise and echo.
- ATM: In an Asynchronous Transfer Mode (ATM) network, performance can be measured by line rate, quality of service (QoS), data throughput, connect time, stability, technology, modulation technique and modem enhancements.[34][verification needed][full citation needed]
There are many ways to measure the performance of a network, as each network is different in nature and design. Performance can also be modelled instead of measured. For example, state transition diagrams are often used to model queuing performance in a circuit-switched network. The network planner uses these diagrams to analyze how the network performs in each state, ensuring that the network is optimally designed.[35]
Network congestion
Network congestion occurs when a link or node is carrying so much data that its quality of service deteriorates. Typical effects include queueing delay, packet loss or the blocking of new connections. A consequence of these latter two is that incremental increases in offered load lead either only to small increase in network throughput, or to an actual reduction in network throughput.
Network protocols that use aggressive retransmissions to compensate for packet loss tend to keep systems in a state of network congestion—even after the initial load is reduced to a level that would not normally induce network congestion. Thus, networks using these protocols can exhibit two stable states under the same level of load. The stable state with low throughput is known as congestive collapse.
Modern networks use congestion control, congestion avoidance and traffic control techniques to try to avoid congestion collapse. These include: exponential backoff in protocols such as 802.11's CSMA/CA and the original Ethernet, window reduction in TCP, and fair queueing in devices such as routers. Another method to avoid the negative effects of network congestion is implementing priority schemes, so that some packets are transmitted with higher priority than others. Priority schemes do not solve network congestion by themselves, but they help to alleviate the effects of congestion for some services. An example of this is 802.1p. A third method to avoid network congestion is the explicit allocation of network resources to specific flows. One example of this is the use of Contention-Free Transmission Opportunities (CFTXOPs) in the ITU-T G.hn standard, which provides high-speed (up to 1 Gbit/s) Local area networking over existing home wires (power lines, phone lines and coaxial cables).
For the Internet, RFC 2914 addresses the subject of congestion control in detail.
Network resilience
Network resilience is "the ability to provide and maintain an acceptable level of service in the face of faults and challenges to normal operation.”[36]
Security
Network security
Network security consists of provisions and policies adopted by the network administrator to prevent and monitor unauthorized access, misuse, modification, or denial of the computer network and its network-accessible resources.[37] Network security is the authorization of access to data in a network, which is controlled by the network administrator. Users are assigned an ID and password that allows them access to information and programs within their authority. Network security is used on a variety of computer networks, both public and private, to secure daily transactions and communications among businesses, government agencies and individuals.
Network surveillance
Network surveillance is the monitoring of data being transferred over computer networks such as the Internet. The monitoring is often done surreptitiously and may be done by or at the behest of governments, by corporations, criminal organizations, or individuals. It may or may not be legal and may or may not require authorization from a court or other independent agency.
Computer and network surveillance programs are widespread today, and almost all Internet traffic is or could potentially be monitored for clues to illegal activity.
Surveillance is very useful to governments and law enforcement to maintain social control, recognize and monitor threats, and prevent/investigate criminal activity. With the advent of programs such as the Total Information Awareness program, technologies such as high speed surveillance computers and biometrics software, and laws such as the Communications Assistance For Law Enforcement Act, governments now possess an unprecedented ability to monitor the activities of citizens.[38]
However, many civil rights and privacy groups—such as Reporters Without Borders, the Electronic Frontier Foundation, and the American Civil Liberties Union—have expressed concern that increasing surveillance of citizens may lead to a mass surveillance society, with limited political and personal freedoms. Fears such as this have led to numerous lawsuits such as Hepting v. AT&T.[38][39] The hacktivist group Anonymous has hacked into government websites in protest of what it considers "draconian surveillance".[40][41]
End to end encryption
End-to-end encryption (E2EE) is a digital communications paradigm of uninterrupted protection of data traveling between two communicating parties. It involves the originating party encrypting data so only the intended recipient can decrypt it, with no dependency on third parties. End-to-end encryption prevents intermediaries, such as Internet providers or application service providers, from discovering or tampering with communications. End-to-end encryption generally protects both confidentiality and integrity.
Examples of end-to-end encryption include HTTPS for web traffic, PGP for email, OTR for instant messaging, ZRTP for telephony, and TETRA for radio.
Typical server-based communications systems do not include end-to-end encryption. These systems can only guarantee protection of communications between clients and servers, not between the communicating parties themselves. Examples of non-E2EE systems are Google Talk, Yahoo Messenger, Facebook, and Dropbox. Some such systems, for example LavaBit and SecretInk, have even described themselves as offering "end-to-end" encryption when they do not. Some systems that normally offer end-to-end encryption have turned out to contain a back door that subverts negotiation of the encryption key between the communicating parties, for example Skype or Hushmail.
The end-to-end encryption paradigm does not directly address risks at the communications endpoints themselves, such as the technical exploitation of clients, poor quality random number generators, or key escrow. E2EE also does not address traffic analysis, which relates to things such as the identities of the end points and the times and quantities of messages that are sent.
SSL/TLS
The introduction and rapid growth of e-commerce on the world wide web in the mid-1990s made it obvious that some form of authentication and encryption was needed. Netscape took the first shot at a new standard. At the time, the dominant web browser was Netscape Navigator. Netscape created a standard called secure socket layer (SSL). SSL requires a server with a certificate. When a client requests access to an SSL-secured server, the server sends a copy of the certificate to the client. The SSL client checks this certificate (all web browsers come with an exhaustive list of CA root certificates preloaded), and if the certificate checks out, the server is authenticated and the client negotiates a symmetric-key cipher for use in the session. The session is now in a very secure encrypted tunnel between the SSL server and the SSL client.[13]
Views of networks
Users and network administrators typically have different views of their networks. Users can share printers and some servers from a workgroup, which usually means they are in the same geographic location and are on the same LAN, whereas a Network Administrator is responsible to keep that network up and running. A community of interest has less of a connection of being in a local area, and should be thought of as a set of arbitrarily located users who share a set of servers, and possibly also communicate via peer-to-peer technologies.
Network administrators can see networks from both physical and logical perspectives. The physical perspective involves geographic locations, physical cabling, and the network elements (e.g., routers, bridges and application layer gateways) that interconnect via the transmission media. Logical networks, called, in the TCP/IP architecture, subnets, map onto one or more transmission media. For example, a common practice in a campus of buildings is to make a set of LAN cables in each building appear to be a common subnet, using virtual LAN (VLAN) technology.
Both users and administrators are aware, to varying extents, of the trust and scope characteristics of a network. Again using TCP/IP architectural terminology, an intranet is a community of interest under private administration usually by an enterprise, and is only accessible by authorized users (e.g. employees).[42] Intranets do not have to be connected to the Internet, but generally have a limited connection. An extranet is an extension of an intranet that allows secure communications to users outside of the intranet (e.g. business partners, customers).[42]
Unofficially, the Internet is the set of users, enterprises, and content providers that are interconnected by Internet Service Providers (ISP). From an engineering viewpoint, the Internet is the set of subnets, and aggregates of subnets, which share the registered IP address space and exchange information about the reachability of those IP addresses using the Border Gateway Protocol. Typically, the human-readable names of servers are translated to IP addresses, transparently to users, via the directory function of the Domain Name System (DNS).
Over the Internet, there can be business-to-business (B2B), business-to-consumer (B2C) and consumer-to-consumer (C2C) communications. When money or sensitive information is exchanged, the communications are apt to be protected by some form of communications security mechanism. Intranets and extranets can be securely superimposed onto the Internet, without any access by general Internet users and administrators, using secure Virtual Private Network (VPN) technology.
Journals and newsletters
Open Computer Science (open access journal)
See also
- Comparison of network diagram software
- Cyberspace
- History of the Internet
- Network simulation
- Network planning and design
- Network traffic control
- Minimum-Pairs Protocol
References
^ Computer network definition, archived from the original on 2012-01-21, retrieved 2011-11-12
^ "История о том, как пионер кибернетики оказался не нужен СССР" [The story of how a cybernetics pioneer became unnecessary to the USSR]. ria.ru (in Russian). МИА «Россия сегодня». 2010-08-09. Retrieved 2015-03-04.Главным делом жизни Китова, увы, не доведенным до практического воплощения, можно считать разработку плана создания компьютерной сети (Единой государственной сети вычислительных центров - ЕГСВЦ) для управления народным хозяйством и одновременно для решения военных задач. Этот план Анатолий Иванович предложил сразу в высшую инстанцию, направив в январе 1959 года письмо генсеку КПСС Никите Хрущеву. Не получив ответа (хотя начинание на словах было поддержано в различных кругах), осенью того же года он заново направляет на самый верх письмо, приложив к нему 200-страничный детальный проект, получивший название 'Красной книги'. [One can regard the magnum opus of Kitov's career as his elaboration of the plan – unfortunately never brought into practical form – for the establishment of a computer network (the Unified State Network of Computer Centres – EGSVTs) for the control of the national economy and simultaneously for the resolution of military tasks. Anatolii Ivanovich presented this plan directly to the highest levels, sending a letter in January 1959 to the General Secretary of the Communist Party of the Soviet Union Nikita Khrushchev. Not receiving a reply (although supported in various circles), in the autumn of the same year he again sent a letter to the very top, appending a 200-page detailed project plan, called the 'Red Book']
^ Isaacson, Walter (2014). The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution. Simon and Schuster. pp. 237–246.
^ "Inductee Details - Paul Baran". National Inventors Hall of Fame. Retrieved 6 September 2017.
^ "Inductee Details - Donald Watts Davies". National Inventors Hall of Fame. Retrieved 6 September 2017.
^ Roberts, Larry; Marrill, Tom (October 1966). Toward a Cooperative Network of Time-Shared Computers. Fall AFIPS Conference.
^ Chris Sutton. "Internet Began 35 Years Ago at UCLA with First Message Ever Sent Between Two Computers". UCLA. Archived from the original on March 8, 2008.
^ Gillies, James; Cailliau, Robert (2000). How the Web was Born: The Story of the World Wide Web. Oxford University Press. p. 25. ISBN 0192862073.
^ C. Hempstead; W. Worthington (2005). Encyclopedia of 20th-Century Technology. Routledge.
^ Bennett, Richard (September 2009). "Designed for Change: End-to-End Arguments, Internet Innovation, and the Net Neutrality Debate" (PDF). Information Technology and Innovation Foundation. p. 11. Retrieved 11 September 2017.
^ Robert M. Metcalfe; David R. Boggs (July 1976). "Ethernet: Distributed Packet Switching for Local Computer Networks". Communications of the ACM. 19 (5): 395–404. Archived from the original on 2007-08-07.
^ ab Spurgeon, Charles E. (2000). Ethernet The Definitive Guide. O'Reilly & Associates. ISBN 1-56592-660-9.
^ ab Meyers, Mike (2012). CompTIA Network+ exam guide : (exam N10-005) (5th ed.). New York: McGraw-Hill. ISBN 9780071789226. OCLC 748332969.
^ Laura Acevedo. "The Disadvantages of Wired Technology". Chron.
^ "Bergen Linux User Group's CPIP Implementation". Blug.linux.no. Retrieved 2014-03-01.
^ A. Hooke (September 2000), Interplanetary Internet (PDF), Third Annual International Symposium on Advanced Radio Technologies, archived from the original (PDF) on 2012-01-13, retrieved 2011-11-12
^ "Define switch". webopedia. Retrieved April 8, 2008.
^ Bradley Mitchell. "bridge – network bridges". About.com. Archived from the original on 2008-03-28.
^ ab D. Andersen; H. Balakrishnan; M. Kaashoek; R. Morris (October 2001), Resilient Overlay Networks, Association for Computing Machinery, retrieved 2011-11-12
^ "End System Multicast". project web site. Carnegie Mellon University. Archived from the original on February 21, 2005. Retrieved May 25, 2013.
^ For an interesting write-up of the technologies involved, including the deep stacking of communication protocols used, see.Martin, Thomas. "Design Principles for DSL-Based Access Solutions" (PDF). Retrieved 18 June 2011.
^ Paetsch, Michael (1993). The evolution of mobile communications in the US and Europe: Regulation, technology, and markets. Boston, London: Artech House. ISBN 978-0-8900-6688-1.
^ Bush, S. F. (2010). Nanoscale Communication Networks. Artech House. ISBN 978-1-60807-003-9.
^ Margaret Rouse. "personal area network (PAN)". TechTarget. Retrieved January 29, 2011.
^ "New global standard for fully networked home". ITU-T Newslog. ITU. 2008-12-12. Archived from the original on 2009-02-21. Retrieved 2011-11-12.
^ "IEEE P802.3ba 40Gb/s and 100Gb/s Ethernet Task Force". IEEE 802.3 ETHERNET WORKING GROUP. Retrieved 2011-11-12.
^ "IEEE 802.20 Mission and Project Scope". IEEE 802.20 — Mobile Broadband Wireless Access (MBWA). Retrieved 2011-11-12.
^ Mansfield-Devine, Steve (December 2009). "Darknets". Computer Fraud & Security. 2009 (12): 4–6. doi:10.1016/S1361-3723(09)70150-2.
^ Wood, Jessica (2010). "The Darknet: A Digital Copyright Revolution" (PDF). Richmond Journal of Law and Technology. 16 (4). Retrieved 25 October 2011.
^
RFC 5321, "Simple Mail Transfer Protocol", J. Klensin (October 2008)
^
RFC 1035, "Domain names – Implementation and Specification", P. Mockapetris (November 1987)
^ Peterson, L.L.; Davie, B.S. (2011). Computer Networks: A Systems Approach (5th ed.). Elsevier. p. 372. ISBN 978-0-1238-5060-7.
^ ITU-D Study Group 2 (June 2006). Teletraffic Engineering Handbook (PDF). Archived from the original (PDF) on 2007-01-11.
^ Telecommunications Magazine Online, Americas January 2003, Issue Highlights, Online Exclusive: Broadband Access Maximum Performance, Retrieved on February 13, 2005.
^ "State Transition Diagrams". Archived from the original on October 15, 2003. Retrieved July 13, 2003.
^ "Definitions: Resilience". ResiliNets Research Initiative. Retrieved 2011-11-12.
^ Simmonds, A; Sandilands, P; van Ekert, L (2004). "An Ontology for Network Security Attack". Lecture Notes in Computer Science. Lecture Notes in Computer Science. 3285: 317–323. doi:10.1007/978-3-540-30176-9_41. ISBN 978-3-540-23659-7.
^ ab "Is the U.S. Turning Into a Surveillance Society?". American Civil Liberties Union. Retrieved March 13, 2009.
^ Jay Stanley; Barry Steinhardt (January 2003). "Bigger Monster, Weaker Chains: The Growth of an American Surveillance Society" (PDF). American Civil Liberties Union. Retrieved March 13, 2009.
^ Emil Protalinski (7 April 2012). "Anonymous hacks UK government sites over 'draconian surveillance'". ZDNet. Retrieved 12 March 2013.
^ James Ball (20 April 2012). "Hacktivists in the frontline battle for the internet". The Guardian. Retrieved 17 June 2012.
^ ab
RFC 2547, "BGP/MPLS VPNs", E. Rosen; Y. Rekhter (March 1999)
This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C".
Further reading
- Shelly, Gary, et al. "Discovering Computers" 2003 Edition.
- Wendell Odom, Rus Healy, Denise Donohue. (2010) CCIE Routing and Switching. Indianapolis, IN: Cisco Press
- Kurose James F and Keith W. Ross : Computer Networking: A Top-Down Approach Featuring the Internet, Pearson Education 2005.
William Stallings, Computer Networking with Internet Protocols and Technology, Pearson Education 2004.- Important publications in computer networks
- Network Communication Architecture and Protocols: OSI Network Architecture 7 Layers Model
Dimitri Bertsekas, and Robert Gallager, "Data Networks," Prentice Hall, 1992.
External links
Networking at Curlie- IEEE Ethernet manufacturer information
- A computer networking acronym guide